CVPR 2024 | Modular Blind Video Quality Assessment:模块化无参视频质量评估
出处:
mp.weixin.qq.com
作者:
多媒体实验室
无参视频质量评估 (Blind Video Quality Assessment,BVQA) 在评估和改善各种视频平台并服务用户的观看体验方面发挥着关键作用。当前基于深度学习的模型主要以下采样/局部块采样的形式分析视频内容,而忽视了实际空域分辨率和时域帧率对视频质量的影响,随着高分辨率和高帧率视频投稿逐渐普及,特别是跨分辨率/帧率视频转码档位画质评估场景中,这种影响变得更加不可忽视。在本文中,我们提出了一种模块化 BVQA 模型,以及一种训练该模型以提高其模块化性的方法。我们的模型包括基础质量预测模块、空域矫正模块和时域矫正模块,分别显式地响应视频质量的视觉内容和失真、空域分辨率和时域帧率变化情况。我们用提出的模块化BVQA模型在专业生成的内容和用户生成的内容视频数据库上进行了大量实验。实验表明,我们的质量模型实现了优于当前方法或相近的性能。此外,模块化的模型为分析现有视频质量数据库的空间和时间复杂性提供了机会。最后,我们的 BVQA 模型可以轻量高效地添加其他与质量相关的视频属性,例如动态范围和色域作为额外的矫正模块。