• 文库
  • 字符
  • 转换
  • 加密
  • 网络
  • 更多
    图表
    数学
    坐标
    图片
    文件
  • 文库
    字符
    转换
    加密
    网络
    更多
    图表
    数学
    坐标
    图片
    文件
logo 在线工具大全

生成式推荐系统初探

出处: mp.weixin.qq.com 作者: 孙文奇

随着 ChatGPT 的横空出世与 GPT-4 的重磅登场,生成式 AI(Generative AI)引起了前所未有的关注,基于 GPT(Generative Pre-Trained Transformer)的模型在各类 NLP 和 CV 任务上取得了惊人的效果。生成式 AI 模型可以根据训练过的数据创建新的内容、模式或解决方案,一些典型应用包括 ChatGPT、Stable Diffusion 和 DALL·E 等(封面图片来自 DALL·E)。然而,在推荐系统(RS)领域研究中,受限于推荐系统 User/Item ID 的范式,以及大多情况下为非通用、非常识知识,因而直接将基于 GPT 的模型作为推荐模型具有一定的局限性。例如,在电影、图书和音乐等领域推荐场景直接将 ChatGPT 作为推荐模型可以取得较好的效果,然而,在其他一些领域推荐场景直接利用 ChatGPT 效果有限。随着各类生成式模型层出不穷,部分研究人员开始考虑如何在 RS 中有效引入生成式 AI。本文主要关注 RS 和生成式 AI 可能存在的结合点,调研了 RecSys'23 等会议录用的若干相关工作,以及最新已公开

查看原文 39 技术 lddgo 分享于 2023-08-15