目前,美团内部每天产生的慢查询数量已经超过上亿条。如何高效准确地为慢查询推荐缺失的索引来改善其执行性能,是美团数据库研发中心面临的一项挑战。为此,我们与华东师范大学开展了科研合作,在AI领域对索引推荐进行了探索和实践,并将基于代价的方法和新提出的基于AI+数据驱动的方法共同应用于慢查询的索引推荐,成功提升了推荐效果。