数据驱动与 LLM 微调: 打造 E2E 任务型对话 Agent
出处:
mp.weixin.qq.com
作者:
Thoughtworks
在对话系统的设计和实现中,传统的基于 Rasa-like 框架的方法往往需要依赖于多个模块的紧密协作,例如我们在之前的文章中提到的基于大模型(LLM)构建的任务型对话 Agent,Thought Agent,其由自然语言理解(NLU)、对话管理(DM)和对话策略(DP)等模块共同协作组成。这种模块化的设计虽然在理论上具有灵活性,但在实践中却带来了诸多挑战,尤其是在系统集成、错误传播、维护更新以及开发门槛等方面。 为了克服这些挑战,构建一个端到端(E2E)的模型显得尤为关键。E2E 的模型通过将对话的各个阶段集成到一个统一的框架中,极大地简化了系统架构,提高了处理效率,并减少了错误传递的可能性。此外,由于其简化的架构,也更易于维护和更新,从而降低了开发和维护的成本。 在我们看来,端到端的对话 Agent 不仅在技术上更具优势,而且在实际应用中也展现了其独特的价值和潜力,例如能够快速构建帮助用户查询信息、调度技能的 Agent。