• 文库
  • 字符
  • 转换
  • 加密
  • 网络
  • 更多
    图表
    数学
    坐标
    图片
    文件
  • 文库
    字符
    转换
    加密
    网络
    更多
    图表
    数学
    坐标
    图片
    文件
logo 在线工具大全

前沿多模态模型开发与应用实战3:DeepSeek-VL2多模态理解大模型算法解析与功能抢先体验

出处: mp.weixin.qq.com

多模态理解大模型,是一类可以同时处理和理解多种数据形式(如图像、文本、视频等)的人工智能大模型,可以应用于图文理解、视觉问答、文档理解、场景描述等任务。本文将介绍目前热门的 DeepSeek-VL2多模态大模型。DeepSeek-VL2是一款基于混合专家(MoE,Mixture of Experts)架构的多模态大模型,结合了混合专家架构和多模态数据处理能力,通过稀疏计算和专家分工的方式高效处理多种模态(如文本、图像、音频等)的数据,推理时只激活部分网络参数。而前两期课程介绍的 Qwen2.5VL、Janus-Pro 以及 DeepSeek-VL第一代模型,则是经典的 Dense 类的多模态理解大模型,会对所有模型参数进行计算和更新。MoE(Mixture of Experts)混合专家模型的核心思想是将模型划分为多个专家子网络(experts),并通过路由机制(router)动态选择合适的专家来处理输入数据。MoE 的最大优势就是是稀疏激活,只有少数几个专家网络模块会被激活,这意味着计算量可以显著减少,计算效率得到提升,同时精度指标远远超出相同激活参数量的 Dense 类模型。

查看原文 4 技术 lddgo 分享于 2025-04-02