Generator-Evaluator重排模型在淘宝流式场景的实践
出处:
mp.weixin.qq.com
作者:
抟宇、敬千、阿町
除了相关性,复杂信息流推荐场景还需要兼顾多样的业务需求,包括打散(多样性),流量调控,多展示形态/多路供给融合等。传统推荐系统采用pipeline的形式,分步处理上述需求,缺少统筹优化,这些模块之间常出现矛盾与覆盖,限制场景推荐效果。我们提出全新的基于Generator-Evaluator(GE)架构的重排模型,它不仅能够突破传统相关性贪心排序的范式,以序列整体效果为目标生成序列,还能突破pipeline的推荐范式,在一个模型中有机融合复杂业务规则,给出end2end联合最优解。我们在淘宝信息流场景验证了提案的有效性,并全量上线。