在手机淘宝等高频更新的业务场景中,UI页面的动态化和快速交付成为技术团队面临的重要挑战。本文围绕“客户端动态化页面搭建”这一主题,深入探讨了如何通过抽象框架设计解决高动态化页面的快速构建问题。文章详细介绍了框架的核心模块(如DataEngine、LayoutEngine、StateCenter等)、页面动态性实现方式、组件通信机制以及业务接入流程,并结合实际案例分析了布局方式多样性的问题及解决方案。最终总结了该框架在动态性、拓展性和能力沉淀方面的优势,为类似业务场景提供了宝贵的实践经验。
随着人工智能技术的快速发展,检索增强生成(RAG)作为一种结合检索与生成的创新技术,正在重新定义信息检索的方式。本文深入探讨了RAG的核心原理及其在实际应用中的挑战与解决方案。文章首先分析了通用大模型在知识局限性、幻觉问题和数据安全性等方面的不足,随后详细介绍了RAG通过“检索+生成”模式如何有效解决这些问题。具体而言,RAG利用向量数据库高效存储与检索目标知识,并结合大模型生成合理答案。此外,文章还对RAG的关键技术进行了全面解析,包括文本清洗、文本切块、向量嵌入、召回优化及提示词工程等环节。最后,针对RAG系统的召回效果与模型回答质量,本文提出了多种评估方法,为实际开发提供了重要参考。通过本文,读者可以全面了解RAG技术的原理、实现路径及其在信息检索领域的革命性意义。
为了构建现代化的可观测数据采集器LoongCollector,iLogtail启动架构通用化升级,旨在提供高可靠、高可扩展和高性能的实时数据采集和计算服务。然而,通用化的过程总会伴随性能劣化,本文重点介绍LoongCollector的性能优化之路,并对通用化和高性能之间的平衡给出见解。
人工智能技术的飞速进步,正在重塑全球商业格局,其影响辐射到各个行业领域。鉴于此,阿里云云栖号特别推出《一周AI大事件》,汇聚全球人工智能的最新动态。
Embedding(嵌入)是现代机器学习和深度学习的重要组成部分,通过将离散数据映射到连续向量空间,解决了高维稀疏性和语义表达的问题。它在自然语言处理、推荐系统、计算机视觉等领域有着广泛的应用。RTP-LLM是阿里巴巴智能引擎团队自研的大模型推理加速引擎,作为一个高性能的大模型推理解决方案,它已被广泛应用于阿里内部,本文将介绍项目在Embedding框架上的实践和思考。 在我们的生产环境中,主要存在两种使用Transformer模型实时生成Embedding的场景:一类是部署在云服务器或者内部大模型服务平台的Pytorch Huggingface模型,用于计算Embedding或者进行重排/分类;另一类是搜推广场景,使用Tensorflow的Bert模型计算商品和用户的相似度。这两类场景性能表现都一般,因此我们希望能够提供一个解决方案,能够在部署方便的前提下,优化上述两种场景Transformer Embedding计算的耗时和吞吐,减少资源消耗。
随着人工智能技术的快速发展,检索增强生成(RAG)作为一种结合检索与生成的创新技术,正在重新定义信息检索的方式。本文深入探讨了RAG的核心原理及其在实际应用中的挑战与解决方案。文章首先分析了通用大模型在知识局限性、幻觉问题和数据安全性等方面的不足,随后详细介绍了RAG通过“检索+生成”模式如何有效解决这些问题。具体而言,RAG利用向量数据库高效存储与检索目标知识,并结合大模型生成合理答案。此外,文章还对RAG的关键技术进行了全面解析,包括文本清洗、文本切块、向量嵌入、召回优化及提示词工程等环节。最后,针对RAG系统的召回效果与模型回答质量,本文提出了多种评估方法,为实际开发提供了重要参考。通过本文,读者可以全面了解RAG技术的原理、实现路径及其在信息检索领域的革命性意义。