过去一年,淘天业务技术同学持续关注技术的前沿和变革,并在研究领域取得了一系列创新成果。 按照计算机协会定义的CCF-A类会议和期刊,我们精选出同学们在数据挖掘领域、机器学习、计算机视觉及多媒体等领域里发表的17篇顶会paper,涵盖了KDD2023 、WWW2023 、IEEE VR2023 、 CVPR2023等多个国际会议。后文将带大家迅速了解这17篇论文的研究成果及其在业务领域内的落地应用,并附上paper全文PDF文件可供下载和阅读。 保持更新,不断迭代,希望你读以下论文时能够为你带来新的思考。
本文讨论了在不使用websocket做服务端推送的情况下,如何写出一个健壮的前端轮询。文章提供了一些常见的前端轮询的应用场景以及可能遇到的问题,欢迎大家一起讨论。
广义的软件研发活动涉及到需求分析、源码阅读和理解、代码编写、测试编写、配置环境、发布运维、安全漏洞修复,各种基础软件升级等等,这些方方面面的工作,大致可以分为两类,第一类是价值创造活动,第二类是为了价值创造不得不付出的成本。 新产品特性的研发,属于价值创造的部分。例如一个编辑器的软件,新增特性可现实用户当前编写文章的字数,这个特性可以激励用户更积极地创作,潜在的用户会更喜欢这个编辑器软件。新产品特性的研发,对于开发者来说,是一个学习和创造的过程,他可能需要和用户沟通,和产品经理沟通,需要理解现有系统的概念和运行逻辑,以及在必要的时候需要通过搜索学习新的技术以实现特性,有了这些上下文基础,才能进行编码和测试等工作。可以把编码理解成翻译工作,在我看来,把英文翻译成中文,和把领域知识翻译成编程语言,有着非常高的相似度。这类研发活动,通常是产品导向的,其关键目标是给用户创造增量的价值。
本文针对的是已在 ECS 上搭建幻兽帕鲁服务器的玩家,可以快速迁移到计算巢,支持图形化管理配置。如果你没有买服务器ECS,建议你直接点击阅读原文,在计算巢上直接部署。
本文是普适性的经验分享,并非按规范局限在 JavaScript 前端视角 做出的总结,除JavaScript外还深入结合了ActionScript 3.0、PHP、C / C++、Basic非纯粹OOP领域语言的经验。
大型语言模型(Large language models,LLM)是基于大量数据进行预训练的超大型深度学习模型。底层转换器是一组神经网络,这些神经网络由具有 self-attention 的编码器和解码器组成。编码器和解码器从一系列文本中提取含义,并理解其中的单词和短语之间的关系。 当前 LLM 模型推理的主要瓶颈是 GPU 显存资源不足。因此,各类加速框架主要集中于降低 GPU 显存峰值和提高 GPU 使用率两大目标。 TensorRT-LLM[1]是 NVIDIA 推出的大语言模型(LLM)推理优化框架。它提供了一组 Python API 用于定义 LLMs,并且使用最新的优化技术将 LLM 模型转换为 TensorRT Engines,推理时直接使用优化后的 TensorRT Engines。 TensorRT-LLM 主要利用以下四项优化技术提升 LLM 模型推理效率。
本文是一篇DDD的最佳实践文章,读者也可以认为本文类似在介绍一种多字段单据的设计模式,整个文章会以一个简单版的电商购物背景作为一个领域上下文,过程中注重介绍领域组件的形成过程,同时会重点突出DDD的核心点。