淘宝开放平台是阿里与外部生态互联互通的重要开放途径,通过开放的产品技术把阿里经济体一系列基础服务,像水、电、煤一样输送给我们的商家、开发者、社区媒体以及其他合作伙伴,推动行业的定制、创新、进化, 并最终促成新商业文明生态圈。 开放业务场景常常跟随内部业务的变化,在数据层面上会频繁发生变更。传统数据库在成本、易用性方面无法很好满足生态异变场景的需求。数据空间的探索,是为了在生态场景中支撑业务快速增长的基础上,提供一个可存储海量数据、单表可自动扩容、字段可无限扩充、查询效率不低于 MySQL 数据库的产品。如何以一套统一的数据架构,支持不同用户按需自定义数据模型,保证数据定义层面的扩展和变更不会影响自身和其他租户业务功能的可用性,将数据和能力集成在平台自身。为此我们打造官方弹性存储空间,在安全可控的情况下沉淀数据支撑更多业务场景标准化开放集成。
本专题共10篇内容,包含淘宝APP基础链路过去一年在用户体验数据科学领域(包括商详、物流、性能、消息、客服、旅程等)一些探索和实践经验,本文为该专题第一篇。 在商详页基于用户动线和VOC挖掘用户决策因子带来浏览体验提升;在物流侧洞察用户求助时间与实际物流停滞时长的关系制订表达策略带来物流产品满意度提升;在性能优化域构建主客观关联模型找到启动时长与负向反馈指标的魔法数字以明确优化目标;构建多源VOC标签体系综合运用用户行为和用户VOC洞察、落地体验优化策略,并总结出一套用户体验分析方法论。
本专题共10篇内容,包含淘宝APP基础链路过去一年在用户体验数据科学领域(包括商详、物流、性能、消息、客服、旅程等)一些探索和实践经验,本文为该专题第二篇。 在商详页基于用户动线和VOC挖掘用户决策因子带来浏览体验提升;在物流侧洞察用户求助时间与实际物流停滞时长的关系制订表达策略带来物流产品满意度提升;在性能优化域构建主客观关联模型找到启动时长与负向反馈指标的魔法数字以明确优化目标;构建多源VOC标签体系综合运用用户行为和用户VOC洞察、落地体验优化策略,并总结出一套用户体验分析方法论。
挂一部分机器,不会丢数据、不会不可服务,是对现代数据库的一个比较基本的要求。 对于早期的单机数据库,一般使用主备架构。主备架构有很多的缺陷,并且这些缺陷是无解的。穿过主备架构里各种“优化”的名词,最后也无非是选择一碗毒药而已,这几个毒药包括: 1.脑裂,两个节点同时写入的冲突数据无法合并,只能丢掉一部分。想要不脑裂?那只能牺牲可用性。 2.同步复制,备机不可用的情况下,算不算写入成功?算,可能丢数据;不算,备机不可用==集群不可用,牺牲可用性。 3.异步复制,这完全躺平了,不考虑一致性。 4.所谓semi-sync等方案,也属于主备架构的一种。 5.业务自己去容错,做针对自己业务场景的对账、补偿等方案。 其实可以看出,主备架构是CAP理论做取舍的重灾区,一致性和可用性之间的关系特别矛盾。所谓一致性和可用性“兼顾”的主备方案,实际上是“兼不顾”。
在内网上有太多的架构相关的文章了(比如大名鼎鼎的自顶向下),我之前也写过应用架构设计的经验。但是总有种雾里看花的感觉,好像有很多相关的知识,soa、分布式事务、DDD、复杂系统重构、领域建模、业务架构、等等等,这些复杂的名词和知识感觉学了一堆仍然不得其法。 所以我准备把我这些年在支付宝做架构,自己摸索成长的内容写下来,看能否帮助到大家。
在淘宝前三年,我主要偏向研究 2d计算机视觉算法,相比于研究GAN、Transformer等热门课题,我更偏向解决一些算法在工业界落地遇到的常见问题,如深度学习模型训练中,常遇到训练数据不足、数据有噪声等问题,所以我更感兴趣噪声标签识别、主动学习等类型算法,也发表了简单实用的O2U-Net[5] (ICCV 2019) 噪声识别算法;另外算法推理性能提升,也是工业应用常见问题,比如在手机端部署CNN模型,需要提升模型推理效率,可能需要模型压缩、剪枝技术,也是我感兴趣的方向之一。 这两年随着元宇宙的爆发,内部团队项目的调整,我也转而开始加入到 元宇宙数字世界构建探索中,开始探索低成本高质量3D建模应用。2022年双十一,淘宝Meta 团队推出的 低成本高质量3D建模工具-Object Drawer,首次将学术界神经渲染3D建模算法(NeRF[1])在工业界规模化落地,实现了十几种品类的低成本建模(成本下降了70%)。我的工作职责主要是Object Drawer性能优化,下面聊一聊性能优化经历。