本文基于笔者对doop静态程序分析框架源代码和规则学习,并结合对目前漏洞公开技术细节的学习,修改增强doop app only模式下的分析规则后,实现通过doop工具识别commons text rce漏洞(CVE-2022-42889)。内容包含三部分,第一部分简单介绍doop分析框架,第二部分简单介绍commons text漏洞的原理和代码调用栈,第三部分重点介绍如何改造doop app only模式下的规则以识别commons text漏洞的污点信息流。
从内部需求出发,我们基于TiKV设计了一款兼容Redis的KV存储。基于TiKV的数据存储机制,对于窗口数据的处理以及过期数据的GC问题却成为一个难题。本文希望基于从KV存储的设计开始讲解,到GC设计的逐层优化的过程,从问题的存在到不同层面的分析,可以给读者在类似的优化实践中提供一种参考思路。
积分体系作为一种常见营销工具,几乎是每一家企业会员营销的必备功能之一,在生活中随处可见,随着vivo互联网业务发展,vivo积分体系的能力也随之得到飞速提升,本篇主要介绍vivo积分任务体系的系统建设历程。
vivo推送平台是vivo公司向开发者提供的消息推送服务,通过在云端与客户端之间建立一条稳定、可靠的长连接,为开发者提供向客户端应用实时推送消息的服务,支持百亿级的通知/消息推送,秒级触达移动用户。 推送系统主要由接入网关,逻辑推送节点,长连接组成,长连接负责与用户手机终端建立连接,及时把消息送达到手机终端。 推送系统的特点是并发高、消息量大、送达及时性较高。 vivo推送系统现状最高推送速度140w/s,单日最大消息量200亿,端到端秒级在线送达率99.9%。同时推送系统具备不可提前预知的突发大流量特点。针对推送系统高并发,高时效,突发流量等特点,如何保证系统可用性呢?本文将从系统架构,存储容灾,流量容灾三个方面进行讲述,推送系统是如何做容灾的。
Tars 是 Linux 基金会的开源项目 (https://github.com/TarsCloud),它是基于名字服务使用 Tars 协议的高性能 RPC 开发框架,配套一体化的运营管理平台,并通过伸缩调度,实现运维半托管服务。Tars 集可扩展协议编解码、高性能 RPC 通信框架、名字路由与发现、发布监控、日志统计、配置管理等于一体,通过它可以快速用微服务的方式构建自己的稳定可靠的分布式应用,并实现完整有效的服务治理。 Tars 目前支持 C++,Java,PHP,Nodejs,Go 语言,其中 TarsCpp 3.x 全面启用对协程的支持,服务框架全面融合协程。本文基于TarsCpp-v3.0.0版本,讨论了协程在TarsCpp服务框架的实现。
随着移动互联网时代的发展,智能手机已经融入到人们的日常生活和工作中,人们可以使用智能手机与好友实时聊天,可以使用智能手机拍摄美景,可以使用智能手机进行指纹支付,还可以使用智能手机处理工作邮件,等等。在便捷我们生活和工作的同时,智能手机不可避免地存储着包括聊天记录、照片、视频、指纹等个人数据,而这些数据或多或少涉及用户的隐私,使得用户对智能手机的隐私保护能力有一定需求。 为了满足用户的隐私保护需求,千镜安全实验室推出千镜安全架构,从应用层、框架层、内核层、芯片层这四个层级对用户的隐私进行保护,而TrustZone[1]属于芯片层级的保护,提供密钥存储、硬件加解密等硬件安全能力,能够有效保证指纹、个人身份信息等关键隐私数据不被破解、窃取。
随着技术的不断的发展,大数据领域对于海量数据的存储和处理的技术框架越来越多。在离线数据处理生态系统最具代表性的分布式处理引擎当属Hive和Spark,它们在分区策略方面有着一些相似之处,但也存在一些不同之处。