近几个月,随着基于Stable Diffusion的相关技术发展,基于参考图的角色定制化技术[1,2, 3, 4, 7]受到相关行业以及学者的广泛关注。其中,人像定制化是指:给定任务角色(参考图),通过提示词控制生成多样新的图像,并且图像中的人物身份信息和参考图保持一致。人像定制化生成技术可以分为1)基于角色LoRA训练以及2)基于注入图像特征两种方案。其中,基于LoRA训练的技术通过收集定制化人物的多张图像(数量越多,效果越好),将该角色的身份信息隐式的表达在添加了LoRA的Stable Diffusion中(或称为训练数字分身),对于每一个人物,在线训练的时长3~5min不等,例如《妙鸭相机》。而基于注入图像特征的方案规避了“数字分身”的训练过程,受到学者的广泛关注,一些学者利用Stable Diffusion能够生成某些名人多种图像这一特性,开发了少样本的训练方案[8],另一些研究集中于从输入图像中学习到一些特征,注入到Stable Diffusion中。这类方案往往需要较大的数据集,效果相对更加出色。我们基于预训练的人物肖像特征提取器,设计了一种保持人物身份信息的技术方案
牛津大学路透新闻研究院每年都会推出一份观察报告《新闻、传媒和技术趋势预测》,来呈现全球新闻媒体在过去一年的发展趋势。在2024年的观察报告中,“平台转移”成为重要的关键词,事关受众资讯接受习惯的变化。报告引用了一项第三方数据,显示2023年来自Facebook的新闻网站流量下降了48%,来自X/Twitter的流量下降了27%。[1] 造成这种变化的重要原因,就是用户的新闻接收习惯发生了转变。目下,以TikTok为代表的短视频平台,正越来越成为年轻受众获取新闻类资讯的渠道。 这不仅仅是牛津一家机构的结论。多项大众调研都发现,短视频平台越来越成为Z世代的主要新闻来源,也是欧美国家越来越受欢迎的新闻来源。2023年,皮尤(Pew Research Center)的一项调查发现,30岁以下成年人中的三分之一,经常在TikTok上浏览新闻。Ofcom关于英国新闻消费的最新报告也显示,TikTok是成年新闻受众增长最快的新闻来源。 这些数据背后,呈现了全球新闻媒体行业正在发生的一项重要趋势与转变:短视频新闻正在快速崛起。
我们小时候都玩过乐高积木。通过堆砌各种颜色和形状的积木,我们可以构建出城堡、飞机、甚至整个城市。现在,想象一下如果有一个数字世界的乐高,我们可以用这样的“积木”来构建智能程序,这些程序能够阅读、理解和撰写文本,甚至与我们对话。这就是大型语言模型(LLM)能够做到的,比如 GPT-4,它就像是一套庞大的乐高积木套装,等待我们来发掘和搭建。
大模型的上下文长度是指我们在使用大模型的时候,给大模型的输入加上输出的字符(Token)总数,这个数字会被限制,如果超过这个长度的字符会被大模型丢弃。目前开源的大模型上下文长度一般不长,比如 Llama 2 只有 4K,Code-Llama 系列因为需要输入代码,扩展到了 16K。闭源系列模型的提供了更长的上下文长度,比如 OpenAI 在其最新模型 GPT-4 Turbo 中提供了 128K 的上下文长度,Anthropic 的 Claude 2.1 模型提供了 200K 上下文长度。 一些场景需要较长上下文,比如,文档翻译需要将整篇文档输入给大模型进行翻译,长文档内容抽取需要大模型读取整篇长文档进行内容抽取,会议内容总结则需要给大模型输入会议聊天记录进行总结等。 想要得到一个长上下文的大模型,一般有两种途径。一种是大模型在初始阶段被设置为长上下文,然后经过预训练,指令微调,对齐训练等方式得到一个长上下文大模型。另外一种方式是选择已经训练好的大模型,通过技术改造扩展其上下文长度,然后再进行微调训练得到长上下文模型。
结合杭州亚运会热点,信息分发方向打造亚运活动集合,让用户除了观看亚运比赛外,还可以在平台内参与更多好玩有趣的活动,有效牵动端内更多互动时长。项目设计师们通过中台高效赋能首页推荐业务、视频推荐业务,打造「亚运游戏王」「亚运集卡」「亚运发文挑战赛」三种不同玩法的运营活动,鼓励用户深度参与,从「看」到「玩」到「发视频」,增强用户在端内的亚运氛围感知,辅助业务达成时长、互动、发文及分享目标。
本文将探讨如何通过使用Intel QuickAssist Technology(QAT)来优化VUA的HTTPS转发性能。我们将介绍如何使用QAT通过硬件加速来提高HTTPS转发的性能,并探讨QAT在不同应用场景中的表现。最后,我们将讨论如何根据实际情况进行优化,以获得最佳转发性能。
如今在 Kubernetes 中,服务网格已经变得司空见惯,有些平台甚至默认将其构建到集群中。服务网格无疑在多种方面提供了诸多好处,这些好处众所周知,但也众所周知,它们显著增加了集群的复杂性。除了增加了复杂性之外,服务网格在强制执行 Pod 安全性方面也带来了(臭名昭著的)问题,因为它们需要提升的权限可能对其他准入控制器造成难以处理的困扰,例如 Kubernetes 自身的 Pod 安全准入控制器。在本文中,我们将更详细地解释这个问题以及在使用服务网格时 Kyverno 如何成为真正的救星,同时为你预览一下即将到来的 Kyverno 1.12 版本中的一些东西,这将使安全服务网格变得轻而易举!