数据湖计算部分,Spark 作为 ETL Batch 任务的主要批处理引擎,Flink 作为准实时计算的流处理引擎,StarRocks 和 Presto 作为即席查询的 OLAP 引擎。数据湖管理层以 Iceberg 为核心,同时开放了一些简单的 API,支持用户通过 SDK 的方式去调用。在 Iceberg 之上构建了一套 Auto Optimize Service 服务,帮助用户在使用 Iceberg 的过程中实现查询性能的提升和存储成本的降低。数据湖底层存储基于 HDFS 和 COS,COS 是腾讯云的云对象存储,可以满足云上用户的大规模结构化/非结构化存储需求,在上层计算框架和底层存储系统之间,也会引入 Alluxio 构建了一个统一的存储 Cache 层,进行数据缓存提速。本次分享的重点主要是围绕智能优化服务(Auto Optimize Service)展开。
本文介绍了LangChain框架,它能够将大型语言模型与其他计算或知识来源相结合,从而实现功能更加强大的应用。接着,对LangChain的关键概念进行了详细说明,并基于该框架进行了一些案例尝试,旨在帮助读者更轻松地理解LangChain的工作原理。
在程序员的日常工作中,有两大难题:一曰写文档,二曰画图。此前我们策划了多篇技术文档写作指南文章和架构画图技巧文章,有效地帮助到了广大开发者朋友。
自2022年底以来,ChatGPT如一股澎湃的春潮,席卷了全球,人们对其潜在的应用场景无不心生向往。商界人士、学者乃至日常生活中的普通人,都在思索同一个问题:自己的工作未来会如何被AI塑造? 随着时间流逝,很多构想逐渐落地,人类似乎已经习惯于AI在许多工作场景帮助甚至替代我们的实际工作。早期人们对GPT的恐惧逐渐消散,反而变得过度依赖GPT,甚至忽略了可能的局限性与风险。这种大肆依赖GPT并忽视其风险的情况,我们称之为“GPT学”(GPTology)。 心理学的发展一直紧紧跟随科技的创新,社会学家与行为科学家总是依赖尽可能多的技术来收集丰富的数据类型,从神经影像技术、在线调查平台到眼动追踪技术的开发等,都助力心理学取得了关键性的突破。数字革命和大数据的兴起推动了计算社会科学等新学科的形成。正如其他领域(医学[1]、政治[2])一样,能够以惊人的微妙性和复杂性理解、生成和翻译人类语言的大语言模型(LLM),对心理学也产生了深远的影响。
大众点评技术部/搜索与内容智能团队组成的BlackPearl队伍,参加了2024年KDD 2024 OAG-Challenge Cup赛道的WhoIsWho-IND、PST、AQA三道赛题,以较大优势包揽了该赛道全部赛题的冠军。本文对这三个赛道的夺冠方案分别进行了解读,希望对大家有所帮助或启发。