早在2001年,就有研究指出游戏人工智能领域,有极大的潜力实现或创造类人级别的人工智能(human-level AI)[1]。游戏作为人工智能研究的起点,以其任务场景的复杂性和多样性,为人工智能在广度、深度和灵活性等方面接近人类智能提供了保障。 当前,伴随着生成式AI和决策AI技术的迅猛发展,游戏与人工智能共振共生的发展态势更加明显。在全球游戏顶会GDC2024(全球游戏者开发大会2024)上,AI成为大会关注焦点,以AI为主题的演讲达64场,占比达8%。在生成式AI领域,62%的游戏业受访者正在使用AI工具制作游戏内容[2]。在决策AI领域,Google DeepMind团队继Alphastar后再次推出通用游戏智能体SIMA(Scalable Instructable Multiworld Agent),可根据人类自然语言指令在各类3D游戏世界中执行超过600多种任务。
到家搜索业务具有数据量大、过滤比高等特点,为了在保证高召回率的同时进一步提高检索性能,到家搜索技术团队与美团基础研发机器学习平台团队基于GPU实现了支持向量+标量混合检索的通用检索系统,召回率与检索性能均有较大提升。本文将介绍我们在GPU向量检索系统建设中遇到的挑战及解决思路,希望对大家有所帮助或启发。
在人工智能的快速发展中,任务型对话 Agent 正成为提升用户体验和工作效率的关键技术。这类系统通过自然语言交互,专注于高效执行特定任务,如预订酒店或查询天气。尽管市场上的开源框架如 Rasa 和 Microsoft Bot Framework 在对话理解和管理方面已经取得了不错的进展,但仍存在一定的局限性,包括对大量领域数据的依赖、对固定模板的依赖,以及在个性化服务和复杂任务处理方面的不足。 大型语言模型(LLM)的兴起为任务型对话 Agent 的设计和开发带来了新机遇。LLM 强大的语言理解和生成能力,能够有效提高对话系统的准确性和用户体验。得益于这些特点,我们有机会进一步简化任务型对话 Agent 的开发流程,并显著提高开发效率。 本文将重点介绍由 Gluon Meson 平台孵化的创新框架——Thought Agent,探讨如何利用大型语言模型来设计和实现任务型对话 Agent 。该框架已在一家大型银行的智能对话 Agent 项目中得到成功应用。本文旨在为读者提供新的视角,帮助快速构建以 LLM 为辅助的任务型 Agent。
本文作者试着从工程角度去理解LangChain的设计和使用。大家可以将此文档作为LangChain的“10分钟快速上手”手册,希望帮助需要的同学实现AI工程的Bootstrap。
代理(Agent)指能自主感知环境并采取行动实现目标的智能体,即AI作为一个人或一个组织的代表,进行某种特定行为和交易,降低一个人或组织的工作复杂程度,减少工作量和沟通成本。
LangChain 是一个基于开源大语言模型的 AI 工程开发框架,旨在使研究人员和开发人员能够更轻松地构建、实验和部署以自然语言处理(NLP)为中心的应用程序。它提供了多种组件和工具,可帮助用户利用最近的语言模型进展,如大型 Transformer 模型等,并且可以与 Hugging Face 等平台集成。LangChain 的核心理念是将语言模型用作协作工具,通过它,开发者可以构建出处理复杂任务的系统,并且可以高效地对接不同的数据源和应用程序接口(APIs)。
本文主要介绍了商业智能(BI)以及Turing Data Analysis(TDA)的概念和应用。BI通过收集、整理、分析和呈现数据,帮助企业做出更好的决策和战略规划。然而,传统的BI建设思路存在问题,如业务变更数据需求时需要重新开发,以及分析底层数据的效率低等。因此,TDA作为一站式自助分析平台应运而生,它基于明细数据,按照分析主题建设公共数据集,用户可以自由拖拽分析并一键保存结果,同时也可以分享给其他人查看。然而,TDA的建设也面临着分析维度指标要全,数据口径要准,以及查询性能等挑战。针对这些挑战,我们提出全、准、效、快的目标,并通过流程机制和功能建设以及MPP数据引擎来实现这些目标。
数字时代中,标签在购物网站、社交媒体、搜索引擎等各个领域都发挥着重要作用。尽管标签的面积较小,它们却能够为用户提供关键信息,帮助用户快速做出决策。因此,设计一个合理、规范的标签体系成为了许多平台需要面对的挑战。作为百度旗下的B2B平台,爱采购通过不断优化标签体系以提升用户体验。下面将以此为例,简述B2B平台标签体系的设计优化思路。
一直以来,体验都是得物技术部的关键词之一,对于前端开发而言,提高用户体验更是一项至关重要的工作。 本文从本次交易后台性能优化实践出发,同时介绍应用整体架构和设计,希望可以给参与网站性能建设的同学提供一定的学习和参考价值。
亲尝百草,方知甘苦。套路,通常有助于提升代码的可读性、扩展性和效率。以下是作者工作中总结出来的一部分代码套路,分享给大家。