在鸿蒙中开发Flutter项目,一个最大的问题,就是「不太会写鸿蒙代码」,这对于一个Flutter开发者来说,虽然不是一件很麻烦的事,但由于现在鸿蒙的版本和文档还略有一些混乱,所以要写好还是有一些麻烦的,所以,秉着能用工具解决的问题就不要自己写的原则,我们参考Native的Flutter Channel的实现,也就是pigeon的方式,不熟悉的同学可以参考我之前的文章。
收集表是腾讯文档的核心品类之一,也是主要的用户增长来源渠道。作为在重大社会事件中承担社会责任的主要功能,收集表既面临着海量规模的压力考验,也在高速发展的业务进程中遇到了遗留技术债的掣肘。 - 核心服务为C++“翻译”过来的 C++ 风格单体非标 tRPC-Go 服务,代码量较大,不利于多人敏捷协作开发,业务快速迭代时期夹带发布风险高,故障爆炸半径大。 - 业务逻辑耦合严重,接口未做轻重分离,稳定性较差,性能存在瓶颈。 - 业务可观测性存在问题。 在这样的技术背景下,腾讯文档团队对收集表后台服务进行了全面的重构,实现了百万级大收集极限业务场景下提供稳定解决方案的业务收益,完善了底层技术基座,优化了产品体验,实现了开着飞机换引擎的重构效果。
其中一个主要原因是新的决策调用场景的接入,原有的决策调用场景主要是通过RPC接口调用触发的,而流式预测承接的场景主要由kafka等消息中间件来调用,这些场景都存在调用量大的特点,单个场景有上千、万QPS调用。流式预测也存在一些定时触发调用的场景,如供需预测场景,波峰波谷明显。流式预测可以将峰值QPS打平,保证实时性的前提下降低机器成本。二是机器成本,决策服务目前机器资源成本较大。三是接入配置繁琐,非流式预测接入方式需新建服务,通过代码开发方式接入,每次迭代都需进行排期上线的方式进行,较为繁琐。
本文为笔者学习LangChain时对官方文档以及一系列资料进行一些总结~覆盖对Langchain的核心六大模块的理解与核心使用方法,全文篇幅较长,共计50000+字,可先码住辅助用于学习Langchain。
本文整理自美团技术沙龙第80期《美团内容智能分发的算法实践》,分享内容主要包括三部分。第一部分介绍了大众点评内容搜索的场景特点以及面临的挑战;第二部分介绍了为应对这些困难和挑战,技术团队在链路各环节上做的实践优化,包括内容消费和搜索满意度的优化等等;第三部分是总结和对未来的展望。希望能对大家有所帮助或启发。