一、架构设计理念与技术 二、业务系统重构背景 三、系统重构改造模式和架构选择 四、业务驱动的微服务架构演进实践 五、总结和思考 六、Q&A
本文介绍了在 Kubernetes 和 Istio 中使用 gRPC 负载均衡的行为。首先,通过创建命名空间、部署资源和配置文件来准备环境。然后,介绍了没有 Istio 的情况下,gRPC 服务的负载均衡行为。接下来,介绍了如何使用 Istio 创建虚拟服务和目标规则来实现负载均衡。还讨论了 ConnectionPoolSetting 对负载均衡行为的影响。最后,介绍了如何通过入口网关访问 gRPC 服务,并提供了验证步骤。
当用户在浏览B站时,首页所呈现的视频内容以卡片形式依序展示,这些视频卡片的封面大多数是与视频相关的静态图像。在制作视频时,up 主通常会选取视频中的某一帧并加上较为醒目的文案来制作封面;而电影和记录片则倾向于选择具有代表性的精彩帧画面作为封面展示。这种策略通过简洁、直观的封面设计,让用户在页面浏览的时候能迅速捕捉到视频的主题。
人类有终身不断获取、调整和转移知识的能力,虽然在我们的一生中,我们确实倾向于逐渐忘记之前学习过的知识,但只有在极少的情况下,对新知识的学习会灾难性地影响已经学到的知识,这样的学习能力被称为增量学习的能力。 具体来讲,「增量学习的能力就是能够不断地处理现实世界中连续的信息流,在吸收新知识的同时保留甚至整合、优化旧知识的能力。」 增量学习(Incremental Learning)已经有20多年的研究历史,但增量学习更多地起源于认知神经科学对记忆和遗忘机制的研究,因此不少论文的idea都启发于认知科学的发展成果,本文不会探讨增量学习的生物启发,关于面向生物学和认知科学的增量学习综述可见 Continual lifelong learning with neural networks: A review[1]。
情绪识别在各种对话场景中具有广泛的应用价值。例如,在社交媒体中,可以通过对评论进行情感分析来了解用户的情绪态度;在人工客服中,可以对客户的情绪进行分析,以更好地满足其需求。 此外,情绪识别还可以应用于聊天机器人,通过实时分析用户的情绪状态,生成基于用户情感的回复,从而提供更加个性化的交互体验。对话情感识别(Emotion Recognition in Conversation)是一个分类任务,旨在识别出一段对话序列里面每句话的情感标签。 图1给出了一个简单的示例.对话中的话语情绪识别并不简单等同于单个句子的情绪识别,需要综合考虑对话中的背景、上下文、说话人等信息。
谈到数据仓库, 一定离不开使用Extract-Transform-Load (ETL)或 Extract-Load-Transform (ELT)。将来源不同、格式各异的数据提取到数据仓库中,并进行处理加工。 传统的数据转换过程一般采用Extract-Transform-Load (ETL)来将业务数据转换为适合数仓的数据模型,然而,这依赖于独立于数仓外的ETL系统,因而维护成本较高。现在,以火山引擎ByteHouse为例的云原生数据仓库,凭借其强大的计算能力、可扩展性,开始全面支持Extract-Load-Transform (ELT)的能力,从而使用户免于维护多套异构系统。具体而言,用户可以将数据导入后,通过自定义的SQL语句,在ByteHouse内部进行数据转换,而无需依赖独立的ETL系统及资源。 火山引擎ByteHouse是一款基于开源ClickHouse推出的云原生数据仓库,本篇文章将介绍ByteHouse团队如何在ClickHouse的基础上,构建并优化ELT能力,具体包括四部分:ByteHouse在字节的应用、ByteHouse团队做ELT的初衷、ELT in Byt
随着大模型热度持续,基于大模型的各类应用层出不穷。Langchain 作为一个以 LLM 模型为核心的开发框架,可以帮助我们灵活地创建各类应用,同时也为大模型的应用引入新的安全隐患。从今年 4 月 Langchain 被爆出在野 0day 漏洞开始,各类安全问题不断出现。腾讯安全平台部将持续关注大模型的应用安全,详细解读在大模型应用时代,如何与时俱进地保持安全策略,以保障大模型安全、可靠地应用。