闲鱼推荐的演进历程和这四个特性密不可分,所以闲鱼推荐大致可以分成四个阶段 • 阶段一:圈品+离线打分。这个阶段推荐主要靠圈品+离线算分为主,无个性化,时效性天级。 • 阶段二:少量算法。阶段二开始在首页核心场景引入算法,以天级的I2I为主,但推荐底池时效性已经到了秒级。 • 阶段三:扩大应用。随着业务拿到算法第一波红利,越来越多的业务开始接入算法。特征和模型时效性也从天级提升至小时级,闲鱼首次引入招选搭投,应用大规模铺开。 • 阶段四:随着业务快速成长,规模快速扩大,底层基建迎来大规模升级。全图化,模型自动压缩,通用推荐等实现从0到1的越跃变。
结构化思维是一种将信息要素从无效转化为有序,提炼核心要点,将信息转化为有结构的知识,更好的帮助大脑理解和记忆,并支持我们清晰表达的通用能力。
在使用BI工具的时候,经常遇到的问题是:“不会SQL怎么生产加工数据、不会算法可不可以做挖掘分析?” 而专业算法团队在做数据挖掘时,数据分析及可视化也会呈现相对割裂的现象。流程化完成算法建模和数据分析工作,也是一个提效的好办法。 同时,对于专业数仓团队来说,相同主题的数据内容面临“重复建设,使用和管理时相对分散”的问题——究竟有没有办法在一个任务里同时生产,同主题不同内容的数据集?生产的数据集可不可以作为输入重新参与数据建设?
「历时三年,腾讯自研业务全量上云,规模突破 5000 万核。腾讯云联合 10+ 国民级应用推出 6 万字“腾讯大规模云原生技术实践案例集”,全面了解 QQ、和平精英、腾讯会议、中国南方电网、Unity、作业帮、微盟、小红书、斗鱼等应用服务的登云征程。」
近日,阿里巴巴在国际顶级机器学习会议NeurIPS 2022上发表了新的自研训练模式 Gloabl Batch gradients Aggregation(GBA,论文链接:https://arxiv.org/abs/2205.11048),由阿里妈妈事业部搜索广告团队和智能引擎事业部XDL训练引擎团队联合探索和研发。GBA的提出对阿里巴巴搜推广稀疏模型的训练范式带来了架构性的跨越式升级。本文将从GBA的设计思路、收敛性分析及工程实现等方面展开介绍,欢迎阅读交流。 在过去一段时间内,高性能同步训练架构在阿里巴巴稀疏场景的全面落地,解决了稀疏场景无法充分利用GPU,以及缺乏高效的同步训练方案两个“硬骨头”。从资源性能角度,使得不同场景的深度学习任务训练加速比(每天训练样本日期数量)提高5~10倍,并利用GPU带来3~5倍的成本优势,节省训练开销可达每年千万量级;从业务效果角度,同步训练模式优化给部分广告业务带来了CTR指标百分位的提升。在这个时间点,GBA通过对同步和异步训练自由切换的技术突破,使得低配集群的资源也充分利用起来。GBA算法使得高性能资源和普通资源具有通用性
软件交付的终态是提供一个稳定可预期的系统,可预期的系统要确保环境和软件制品的一致性。而在软件研发协作的过程中,无论是制品、环境,还是发布过程,往往都是定义在代码里的。 软件交付体现为发布,而提升交付能力的目标,是要发的容易,发的频繁,增量要多,每次发的时间要少。
前端程序员最容易搞出 P0 事故的就是白屏,PC 上的白屏我们比较好调,打开 Chrome Devtools 就能看见。 但是手机上的白屏怎么调?以及远程用户手机上的白屏又该怎么调?这时候就需要使用远程调试的技术了。