为了让飞桨开发者们掌握第一手技术动态、让企业落地更加高效,飞桨官方在7月至10月特设《飞桨框架3.0全面解析》系列技术稿件及直播课程。技术解析加代码实战,带大家掌握包括核心框架、分布式计算、产业级大模型套件及低代码工具、前沿科学计算技术案例等多个方面的框架技术及大模型训推优化经验。
虚拟线程是由Java运行时而不是操作系统实现的Java线程,和传统线程(或称之为平台线程)之间的主要区别在于,我们可以很容易地在同一个Java进程中运行大量活动的虚拟线程,甚至数百万个。大量的虚拟线程赋予了它们强大的功能:通过允许服务器并发处理更多的请求,它们可以更有效地运行以thread-per-request(每个请求一个线程)的方式编写的服务器应用程序,从而实现更高的吞吐量和更少的硬件浪费。 一直听闻Java虚拟线程的“威名”很久了,于是最近做个人项目的时候便尝试使用JDK21进行开发,研究一下所谓的虚拟线程的原理与实现。技术水平有限,欢迎一起交流探讨~
本文从追溯时间轮算法的出现,介绍了时间轮算法未出现前,基于队列的定时任务实现,以及基于队列的定时任务实现所存在的缺陷。接着我们介绍了时间轮算法的算法思想及其数据结构,详细阐述了三种时间轮模型的数据结构和优劣性。 再次,我们介绍时间轮算法在 Dubbo 框架中的应用,并给出了它在 Dubbo 中的主要实现方式。 最后,我们以项目中的某个服务架构优化出发,介绍了目前设计中存在的缺陷,并借助来自中间件团队的,包含时间轮算法实现的延迟 MQ,给出了优化设计的方法。
作者一年前围绕设计模式与代码重构写了一篇《代码整洁之道 -- 告别码农,做一个有思想的程序员!》的文章。本文作为续篇,从测试角度谈程序员对软件质量的追求。
对于众多开发者而言,架构图不仅是一项不可或缺的技能,更是他们理解、规划和构建软件系统的关键工具。然而,面对多样化的系统需求和复杂的业务逻辑,如何画好一张架构图,成为了许多程序员面临的共同挑战。今天,我们特邀了同程旅行资深架构师、腾讯云 TVP 李智慧老师,李老师也是畅销书《高并发架构实战:从需求分析到系统设计》的作者 ,他将以深厚的技术功底和丰富的实战经验,为我们揭开常见架构图的神秘面纱,解析它们在软件设计不同阶段的选用原则与应用场景。
近年来,BI平台逐渐开始与AI融合,更注重以纯业务人员为中心,借助自然语言处理技术,打造搜索驱动的数据分析平台,实现数据消费的零门槛。
视频场景分类算法是计算机视觉领域研究的热门内容,并作为复杂任务系统的前置算法,能够应用于我们多媒体实验室多项业务,如内容自适应转码、画质智能修复和视频质量评估(VQA)中。通过针对不同类型的图像自适应抉择不同的模型,从而精准有效提升算法在业务中的实际效果。语言、视觉是人类感知世界最基本的方法,也是人工智能理解世界的两大支柱。多模态是结合了图像、文本、音频等多种数据类型的一种技术方案。该技术不仅提高了模型的泛化能力,还扩展了人工智能技术的应用方向,如图像分类、图像问答、文本图像生成等。本文研究了多模态算法在多媒体系统中进行场景分类的应用,探讨了实施过程中的挑战并给出对应的解决方案。