淘宝人生2的AIGC技术应用——虚拟人写真算法技术方案
Source :
mp.weixin.qq.com
Author :
澎鹏
近几个月,随着基于Stable Diffusion的相关技术发展,基于参考图的角色定制化技术[1,2, 3, 4, 7]受到相关行业以及学者的广泛关注。其中,人像定制化是指:给定任务角色(参考图),通过提示词控制生成多样新的图像,并且图像中的人物身份信息和参考图保持一致。人像定制化生成技术可以分为1)基于角色LoRA训练以及2)基于注入图像特征两种方案。其中,基于LoRA训练的技术通过收集定制化人物的多张图像(数量越多,效果越好),将该角色的身份信息隐式的表达在添加了LoRA的Stable Diffusion中(或称为训练数字分身),对于每一个人物,在线训练的时长3~5min不等,例如《妙鸭相机》。而基于注入图像特征的方案规避了“数字分身”的训练过程,受到学者的广泛关注,一些学者利用Stable Diffusion能够生成某些名人多种图像这一特性,开发了少样本的训练方案[8],另一些研究集中于从输入图像中学习到一些特征,注入到Stable Diffusion中。这类方案往往需要较大的数据集,效果相对更加出色。我们基于预训练的人物肖像特征提取器,设计了一种保持人物身份信息的技术方案