干货 | 携程火车票短信召回算法优化实践
Source :
mp.weixin.qq.com
Author :
Ryan、小白
互联网蓬勃发展的今天是流量为王的时代,但随着流量红利逐渐消失,获客成本的日益增高,用户留存成为各大互联网公司的重点关注问题,其中流失用户的召回在当今的流量红海市场中显得尤为关键,为此,基于大数据和机器学习的智能营销技术应用而生。 携程火车票业务每周都会有短信营销活动,旨在通过对近期未下单的老客发送短信将其召回,促进复购,提升用户粘性(业务流程如图 1 所示);原有业务策略是基于规则的方式随机从满足条件的用户池中选择一部分进行短信投放,针对该方法过于粗放、召回效果不佳、短信发送 ROI 不高的问题,我们分阶段提出基于 Response Model 的转化率预估模型、基于 Uplift Model 的短信敏感度预估模型,逐一对问题进行更科学的定义、拆解和优化。