• ARTICLE
  • STRING
  • CONVERTER
  • ENCRYPT
  • NETWORK
  • MORE
    CHART
    MATH
    COORDINATE
    IMAGE
    FILE
  • ARTICLE
    STRING
    CONVERTER
    ENCRYPT
    NETWORK
    MORE
    CHART
    MATH
    COORDINATE
    IMAGE
    FILE
logo Online Tools

ICLR25 重新思考长尾识别中的分类器再训练:标签过平滑可以实现平衡

Source : mp.weixin.qq.com Author : AI

现实世界的数据普遍存在长尾分布特性,绝大多数样本集中于少量头部类别,而大量尾部类别仅拥有极少量样本数据。尽管传统分类方法在平衡数据集上表现优异,但在面对长尾数据时往往过度偏向多数类而忽视少数类识别。针对这一挑战,学界提出的解耦训练范式(Decoupled Training)[1]通过特征学习和分类器再训练两阶段分离的方式取得了显著进展。现有研究多侧重同时改进特征提取与分类器优化,使得难以准确评估分类器优化的独立贡献。最新研究文献[2]表明,简单的正则就可以得到一个鲁棒的特征表示,基于该泛化的特征表示单凭分类器再训练即可超越前面所有复杂方法。因而,我们需要对分类器再训练阶段的方法统一基准,进行分析比较从而挖掘真正有效提升模型性能的因素。

View 22 Technology lddgo Shared on 2025-02-14