最高提升20倍吞吐量!豆包大模型团队发布全新 RLHF 框架,现已开源!
Source :
mp.weixin.qq.com
Author :
字节跳动技术团队
强化学习(RL)对大模型复杂推理能力提升有关键作用,然而,RL 复杂的计算流程以及现有系统局限性,也给训练和部署带来了挑战。传统的 RL/RLHF 系统在灵活性和效率方面存在不足,难以适应不断涌现的新算法需求,无法充分发挥大模型潜力。 近日,字节跳动豆包大模型团队与香港大学联合提出 HybridFlow(开源项目名:veRL),一个灵活且高效的 RL/RLHF 框架。该框架采用混合编程模型,融合单控制器(Single-Controller)的灵活性和多控制器(Multi-Controller)的高效性,可更好实现和执行多种RL算法,显著提升训练吞吐量,降低开发和维护复杂度。实验结果表明,HybridFlow 在运行各种 RL(HF) 算法时,吞吐量相较 SOTA 基线提升了 1.5-20 倍。