• ARTICLE
  • STRING
  • CONVERTER
  • ENCRYPT
  • NETWORK
  • MORE
    CHART
    MATH
    COORDINATE
    IMAGE
    FILE
  • ARTICLE
    STRING
    CONVERTER
    ENCRYPT
    NETWORK
    MORE
    CHART
    MATH
    COORDINATE
    IMAGE
    FILE
logo Online Tools

构建可扩展的智能体系统:工程化方法与实践(一)

Source : mp.weixin.qq.com Author : 大前端

在当今快速发展的软件开发领域,人工智能(AI)扮演着越来越重要的角色。尽管AI底层科学有所进展,但仍未有颠覆性突破。当前的大语言模型,如GPT-3.5和LLaMA,主要通过规模扩展和工程优化提升性能,包括提示工程、指令微调和人类反馈强化学习(RLHF)等技术。 提升大模型应用能力和效率可通过模型本身的进化和工程方法的优化两种途径实现,但它们在实现成本和长期可扩展性上存在差异。基础模型的调优和训练需要大量算力和专业人员投入。同时,这些模型在实际应用中仍面临幻觉、不可靠和不可扩展等问题,制约了其广泛应用。比如难以完全避免的幻觉问题就凸显了当前AI技术的固有局限性。因此,智能体(Agent)系统作为AI的一个重要分支,在AI软件开发体系中展现出巨大的潜力,有望解决或缓解这些问题。 本文将探讨如何构建一个可扩展的智能体系统,并以代码审查(Code Review)任务为例,展示从概念到实践的全过程。我们将分享工程化方法与最佳实践,但不涉及模型微调(fine-tuning)技术。

View 14 Technology lddgo Shared on 2025-02-11