• ARTICLE
  • STRING
  • CONVERTER
  • ENCRYPT
  • NETWORK
  • MORE
    CHART
    MATH
    COORDINATE
    IMAGE
    FILE
  • ARTICLE
    STRING
    CONVERTER
    ENCRYPT
    NETWORK
    MORE
    CHART
    MATH
    COORDINATE
    IMAGE
    FILE
logo Online Tools
All Chinese English Newest Hottest
135 search results

数据库运维面临着大规模数据库实例难以有效运维、数据库难以做好资源弹性伸缩以及个人隐私数据安全难以保障这三个方面的挑战。对此,vivo给出了自身的应对方案。 首先,vivo自研了数据库运维平台DaaS来支撑数据库运维工作。在规模覆盖、效率提升、故障告警处理等层面均衡发力,保障了数据的稳定性,以工单自助,故障自愈为核心,实现了数据库的高效运维。 其次,在数据库资源弹性管理层面,vivo重视资源成本优化。围绕资源分配、资源弹性伸缩、资源隔离分别给出了智能化解决方案,并通过套餐自动优化,进一步降低了管理成本。 最后,基于个人隐私数据,平台也提供了对业务几乎无影响的MySQL的透明加密方案,来减轻因为隐私数据加密带来的研发和运维工作量。

57 Technology lddgo Shared on 2022-12-08

混排层负责将多个异构队列的结果如广告、游戏、自然量等进行融合,需要在上下游和业务多重限制下取得最优解,相对复杂和难以控制。本文主要从业务、模型等角度介绍了vivo广告策略团队在信息流和应用商店混排上的一些探索和思考。

49 Technology lddgo Shared on 2022-12-08

互联网企业经历过野蛮生长的开拓红利期之后,逐渐越发重视产品发展的科学化、精细化,从粗放型向集约型转换。在美国,增长黑客等数据驱动增长的方法论,正在帮助如Google、Microsoft、Facebook等全球科技巨头实现持续的业务增长;在国内,数据精细运营、AB实验分析来驱动业务有效增长也逐渐成为共识,成为核心手段。其中,A/B测试平台作为典型代表,自然成为了国内主流公司中必不可少的核心工具,有效的提升流量的转化效率和产研的迭代效率。 在过去几年,vivo互联网持续重视科学的实验决策,这意味着所有对用户的改动的发布,都要决策者以相应的实验结论作为依据。比如,修改顶部广告的背景色、测试一个新的广告点击率 (CTR) 预测算法,都需要通过实验的方式进行,那么一个强大的A/B实验平台就非常重要了。vivo霍金实验平台(以下简称霍金)已经从一个单一系统成长为了解决A/B实验相关问题的公司级一站式平台,助力互联网核心业务的快速、准确实验,高效推动业务增长。

198 Technology lddgo Shared on 2022-11-18

在Redis运维过程中,由于Bigkey的存在,会影响业务程序的响应速度,严重的还会造成可用性损失,DBA也一直和业务开发方强调 Bigkey 的规避方法以及危害,但是Bigkey一直没有完全避免。全网Redis集群有2200个以上,实例数量达到4.5万以上,在当前阶段进行一次全网 Bigkey检查,估计需要以年为时间单位,非常耗时。我们需要新的思路去解决Bigkey问题。

58 Technology lddgo Shared on 2022-11-18

近些年随着越来越多的公司或组织引入OKR,OKR在国内逐渐由原来的星星之火发展出燎原之势,本文主要讲述vivo互联网平台产品研发团队对于OKR的理解以及引入OKR之后带来的改变,把我们认为好的东西与大家一起分享。

69 Management lddgo Shared on 2022-11-10

本文是《OKR 之剑》系列之理念第 2 篇。 本文介绍了vivo互联网平台产品研发团队引入OKR的实践经验,并以此总结出适用于其他企业引入OKR的必要步骤和过程。对乐于了解和探索OKR的管理者们有非常好的参考和借鉴意义。

68 Management lddgo Shared on 2022-11-10

随着技术的不断的发展,在大数据领域出现了越来越多的技术框架。而为了降低大数据的学习成本和难度,越来越多的大数据技术和应用开始支持SQL进行数据查询。SQL作为一个学习成本很低的语言,支持SQL进行数据查询可以降低用户使用大数据的门槛,让更多的用户能够使用大数据。 本篇文章主要介绍如何实现一个SQL解析器来应用的业务当中,同时结合具体的案例来介绍SQL解析器的实践过程。

79 Technology lddgo Shared on 2022-10-27

探究Presto SQL引擎 系列:第1篇《探究Presto SQL引擎(1)-巧用Antlr》介绍了Antlr的基本用法以及如何使用Antlr4实现解析SQL查询CSV数据,在第2篇《探究Presto SQL引擎(2)-浅析Join》结合了Join的原理,以及Join的原理,在Presto中的思路。 本文是系列第3篇,介绍基于 Antlr 实现where条件的解析原理,并对比了直接解析与代码生成实现两种实现思路的性能,经实验基于代码生成的实现相比直接解析有 3 倍的性能提升。

218 Technology lddgo Shared on 2022-10-27

在《探究Presto SQL引擎(1)-巧用Antlr》中,我们介绍了Antlr的基本用法以及如何使用Antlr4实现解析SQL查询CSV数据,更加深入理解Presto查询引擎支持的SQL语法以及实现思路。 本次带来的是系列文章的第2篇,本文梳理了Join的原理,以及Join算法在Presto中的实现思路。通过理论和实践的结合,可以在理解原理的基础上,更加深入理解Join算法在OLAP场景下的工程落地技巧,比如火山模型,列式存储,批量处理等思想的应用。

66 Technology lddgo Shared on 2022-10-27

自2014年大数据首次写入政府工作报告,大数据已经发展7年。大数据的类型也从交易数据延伸到交互数据与传感数据。数据规模也到达了PB级别。 大数据的规模大到对数据的获取、存储、管理、分析超出了传统数据库软件工具能力范围。在这个背景下,各种大数据相关工具相继出现,用于应对各种业务场景需求。从Hadoop生态的Hive, Spark, Presto, Kylin, Druid到非Hadoop生态的ClickHouse, Elasticsearch,不一而足... 这些大数据处理工具特性不同,应用场景不同,但是对外提供的接口或者说操作语言都是相似的,即各个组件都是支持SQL语言。只是基于不同的应用场景和特性,实现了各自的SQL方言。这就要求相关开源项目自行实现SQL解析。在这个背景下,诞生于1989年的语法解析器生成器ANTLR迎来了黄金时代。

237 Technology lddgo Shared on 2022-10-27