智能驾驶技术的不断发展,正在改变着我们的出行方式和交通系统。作为其中的一个关键技术,三维重建在智能驾驶系统中起着重要的作用。除去车端本身的感知、重建算法,自动驾驶技术的落地与发展需要庞大的云端重建能力支撑,火山引擎多媒体实验室通过行业领先的自研三维重建技术,结合强大的云平台资源与能力,助力相关技术在云端大规模重建、自动标注、真实感仿真等场景的落地与应用。 本文重点介绍火山引擎多媒体实验室三维重建技术在动态、静态场景的以及结合先进光场重建技术的原理与实践,帮助大家能更好的了解和认识云上智能三维重建如何服务智能驾驶领域,助力行业发展。
火山引擎智能拥塞控制算法 VICC(Volcano Intelligent Congestion Control)是一种自适应的拥塞控制算法,旨在解决全球不同网络环境下,不同音视频应用对带宽利用率和延时的差异化要求。它结合了传统拥塞控制算法(如 GCC 和 BBR)的优点,并且能够根据不同的网络条件、业务偏好和码率特征进行自适应调整,包括自适应拥塞响应速度、自适应带宽探测幅度、自适应丢包检测策略、自适应抗抖动能力和自适应 Padding。通过这些自适应调整,VICC 算法能够提升各种复杂弱网下的带宽利用率,同时在满足不同延时的条件下,尽量提升带宽的稳定性,为用户提供更好的音视频体验。
DataWind是一款支持千亿级别数据自助分析的一站式数据分析与协作平台。可视化能力是DataWind核心能力之一,本文聚焦DataWind的可视化特性,从风格、交互、叙事、智能推荐等多个角度展示这些能力以及其背后的技术实现。
这篇文章将教你如何使用一个开源工具 Documate[1] 快速让你的 VitePress[2] 文档站拥有 AI 对话能力,基于你的文档内容来解答用户问题。
谈到数据仓库, 一定离不开使用Extract-Transform-Load (ETL)或 Extract-Load-Transform (ELT)。将来源不同、格式各异的数据提取到数据仓库中,并进行处理加工。 传统的数据转换过程一般采用Extract-Transform-Load (ETL)来将业务数据转换为适合数仓的数据模型,然而,这依赖于独立于数仓外的ETL系统,因而维护成本较高。现在,以火山引擎ByteHouse为例的云原生数据仓库,凭借其强大的计算能力、可扩展性,开始全面支持Extract-Load-Transform (ELT)的能力,从而使用户免于维护多套异构系统。具体而言,用户可以将数据导入后,通过自定义的SQL语句,在ByteHouse内部进行数据转换,而无需依赖独立的ETL系统及资源。 火山引擎ByteHouse是一款基于开源ClickHouse推出的云原生数据仓库,本篇文章将介绍ByteHouse团队如何在ClickHouse的基础上,构建并优化ELT能力,具体包括四部分:ByteHouse在字节的应用、ByteHouse团队做ELT的初衷、ELT in Byt
随着大数据处理需求的不断增加,更低成本的存储和更统一的分析视角变得愈发重要。数据仓库作为企业核心决策支持系统,如何接入外部数据存储已经是一个技术选型必须考虑的问题。也出于同样的考虑,ByConity 0.2.0 中发布了一系列对接外部存储的能力,初步实现对 Hive 外表及数据湖格式的接入。
企业在进行营销推广时,广告投放通常是必备环节之一。为了避免投放“乱烧钱”,在大规模投放前,企业和广告优化师都会希望在多种广告策略中,找准效果更好策略才进行投放。 早期这样的方案决策只能通过“拍脑袋”,或者简易的分流投放测试来粗略进行。在火山引擎AB测试推出“广告投放AB实验”后,可逐步支撑企业快速、科学地验证不同投放策略的平均转化成本数据效果,并根据实验报告得到计划中不同素材、不同落地页、不同人群包、不同预算等变量到底哪种更好。