本文会从浏览器插件应用场景切入,穿插插件基础能力和常见入口的介绍,核心回答如下三个问题:插件可以被使用在哪些场景?不同的使用场景我们的主要代码实现思路是怎样的?我们可以从哪些角度入手自己开发一款可以落地实用的浏览器插件?
在编程语言的世界中,如何高效地执行代码一直是一个热门话题。随着脚本语言的普及和性能需求的提升,解释执行和即时编译(JIT)成为了两种常见的代码执行方式。本文探讨了这两种技术,通过详细的实例和深入的分析,为我们揭示了它们的工作原理、性能差异以及各自的优缺点。 希望这篇文章能够帮助你更好地理解编程语言执行的技术世界,激发你对高效代码执行的深入思考,并在实践中应用这些宝贵的知识。
本文是技术人面试系列领域模型落地篇,也是面试题系列的完结篇,感谢大家对本系列文章的支持~面试中关于领域模型落地都需要了解哪些内容?一文带你详细了解,欢迎收藏!
数据库领域顶会 ICDE 2024于5月13-17日在荷兰乌特勒支(Utrecht, Netherlands)举办。ICDE (The International Conference on Data Engineering) 与VLDB、SIGMOD被公认为是国际数据管理领域三大顶级学术会议,此次在荷兰召开的ICDE 2024大会,共吸引北京大学、清华大学、浙江大学、MIT、斯坦福等机构,以及谷歌、微软、阿里云、华为、字节等公司的近1000名人员参会,共同探讨AI、数据库、数据处理领域的前沿技术问题。 阿里云数据库事业部共有3篇论文被ICDE 2024接收,其中《Towards a Shared-storage-based Serverless Database Achieving Seamless Scale-up and Read Scale-out》荣获工业和应用赛道的“最佳论文奖”(Industry and Application Track Best Paper Award)。本文将重点解读这篇论文,该论文介绍了PolarDB Serverless的核心技术。
近年来,随着以OpenAI的ChatGPT和Meta的LLaMA为代表的基于数百万网页数据训练的大型Transformer语言模型的兴起,开放域语言生成领域吸引了越来越多的关注。开放域中的条件语言生成效果令人印象深刻,典型的例子有:GPT2在独角兽话题上的精彩续写和XLNet等。促成这些进展的除了transformer架构的改进和大规模无监督训练数据外,更好的采样策略也发挥了不可或缺的作用。 本文简述了不同的采样策略,同时向读者展示了如何使用流行的transformer库轻松实现这些采样策略!
随着大语言模型能力的增强,传统应用不可避免的需要调用LLM接口,提升应用的智能程度和用户体验,但是一般来说大语言模型的输出都是字符串,除了个别厂商支持JSON Mode,或者使用function call强制大语言模型输出json格式,大部分情况下,还是需要业务放自己去处理JSON格式,下面我来总结一下在解析JSON过程中遇到的一些问题和解决方案。