• ARTICLE
  • STRING
  • CONVERTER
  • ENCRYPT
  • NETWORK
  • MORE
    CHART
    MATH
    COORDINATE
    IMAGE
    FILE
  • ARTICLE
    STRING
    CONVERTER
    ENCRYPT
    NETWORK
    MORE
    CHART
    MATH
    COORDINATE
    IMAGE
    FILE
logo Online Tools
All Chinese English Newest Hottest
47 search results

Stream processing is a programming paradigm which views data streams, or sequences of events in time, as the central input and output objects of computation. This enables organizations to harness the value of data immediately, making it a valuable tool for time-sensitive applications and scenarios requiring up-to-the-minute insights. Stream processing systems excel at handling high-velocity, unbounded data streams, such as click streams, log streams, live sensor data, social media feeds

45 Technology lddgo Shared on 2024-01-23

PyFlink serves as a Python API for Apache Flink, providing users with a medium to develop Flink programs in Python and deploy them on a Flink cluster. In this post, we will introduce PyFlink from the following aspects: The structure of a fundamental PyFlink job and some basic knowledge surrounding it The operational mechanisms of PyFlink jobs, the high-level architecture, and its internal workings Essential performance optimization strategies for PyFlink Future projections for PyFlink

50 Technology lddgo Shared on 2024-01-23

Imagine a photo without its vibrant colors; intriguing but lacking depth. Stream enrichment works similarly for data. It infuses raw data streams with added context, transforming them from grayscale to full color. Going beyond the simple transmission of information, stream enrichment breathes life into data, augmenting it with additional context and details. By embedding supplementary data into an existing data stream, businesses and organizations can paint a clearer picture, driving enhanced

195 Technology lddgo Shared on 2024-01-23

Batch processingand stream processing are two very different models for processing data. Both have their strengths but suit different use cases. In this post we cover the differences, provide examples of use cases, and look at the ways the two models can work together.

49 Technology lddgo Shared on 2024-01-23

A common requirement in the area of data engineering is to first process existing historical data before processing continuously live data. Processing existing data first is also referred to as bootstrapping the system. How to easily achieve this with Apache Flink? In this blog-post we will look at Flink's HybridSource which is specifically designed for such a task. If you want to clone the repository with the code from this blog post, use

202 Technology lddgo Shared on 2024-01-23

Every year, Apache Flink® sets new records in its development journey. Standing as a testament to its growing popularity, Flink now boosts over 1.6k contributors, 21k GitHub stars, and 1.4M downloads. In operational environments, Flink clusters are reaching impressive scales, with some individual clusters surpassing 2000 nodes. The largest known Flink infrastructure in production boasts over 4 million CPU cores, processing a staggering 4.1B events per second. If scalability is a concern

43 Technology lddgo Shared on 2024-01-23

In October, at Flink Forward 2023, Streamhouse was officially introduced by Jing Ge, Head of Engineering at Ververica. In his keynote, Jing highlighted the need for Streamhouse, including how it sits as a layer between real-time stream processing and Lakehouse architectures, and discussed the business value it provides.

49 Technology lddgo Shared on 2024-01-23

In this blog post, you will learn how to build a real-time data view on top of your Streamhouse using Apache Paimon table format. If you are coming from the Data Management world, you might know that Data engineers are generally concerned about implementing a data analytics pipeline, minimizing compute-infrastructure cost, and achieving the smallest end-to-end latency for the target users.

44 Technology lddgo Shared on 2024-01-23

Stateful Functions (StateFun) simplifies the building of distributed stateful applications by combining the best of two worlds: the strong messaging and state consistency guarantees of stateful stream processing, and the elasticity and serverless experience of today’s cloud-native architectures and popular event-driven FaaS platforms. Typical StateFun applications consist of functions deployed behind simple services using these modern platforms, with a separate StateFun cluster playing the role

63 Technology lddgo Shared on 2022-09-14

Apache Flink’s checkpoint-based fault tolerance mechanism is one of its defining features. Because of that design, Flink unifies batch and stream processing, can easily scale to both very small and extremely large scenarios and provides support for many operational features like stateful upgrades with state evolution or roll-backs and time-travel.

93 Technology lddgo Shared on 2022-09-14