• ARTICLE
  • STRING
  • CONVERTER
  • ENCRYPT
  • NETWORK
  • MORE
    CHART
    MATH
    COORDINATE
    IMAGE
    FILE
  • ARTICLE
    STRING
    CONVERTER
    ENCRYPT
    NETWORK
    MORE
    CHART
    MATH
    COORDINATE
    IMAGE
    FILE
logo Online Tools
All Chinese English Newest Hottest
1249 search results

基于上述原因,在 iLogtail 诞生 10 周年之际,日志服务启动对 iLogtail 的升级改造,寄希望于让 iLogtail 的易用性更佳,性能更优,可扩展性更强,从而更好地服务广大用户。 目前,经过半年多的重构与优化,iLogtail 2.0 已经呼之欲出。接下来,就让我们来抢先了解一下 iLogtail 2.0 的新特性吧!

46 Technology lddgo Shared on 2024-02-20

本文是技术人面试系列Kafka篇,面试中关于Kafka都需要了解哪些基础?一文带你详细了解,欢迎收藏!

54 Technology lddgo Shared on 2024-02-19

淘天业务技术2023年度热门文章盘点

42 Technology lddgo Shared on 2024-02-19

本文是技术人面试系列MySQL篇,面试中关于MySQL都需要了解哪些基础?一文带你详细了解,欢迎收藏!

75 Technology lddgo Shared on 2024-02-18

时间步入了2024年,新的技术趋势,如大模型/AIGC/多模态等技术,已经开始与实际业务相结合,并开始生产落地。这些新的技术趋势不仅提高了算力的需求,也给底层基础设施带来了更大的挑战。 在计算方面,以GPU和FPGA等异构硬件为例,他们通过短周期的迭代和演进来适应不断变化的需求。阿里集团通过统一调度、统一资源池以及全面弹性等调度手段满足了复杂的计算需求。 在存储方面,经典的微服务应用通过云原生化的方式,兼顾了性能和效率。但对于计算量增量最大的分布式AI训练、大数据等计算密集型应用,data locality直接影响了计算作业的运行效率与吞吐,网络I/O的消耗还间接拉高了带宽成本,且在可预见的场景中,数据集规模的还会以较高的速率保持增长,如何通过合理的数据缓存亲和性技术加速数据访问,将是提升计算任务运行效率的同时降成本的关键。 大模型训练/多媒体等场景的数据集以图片和音频文件为主,天然适合将数据托管在OSS对象存储上,也是目前线上大多数计算作业的存储选型,以训练场景为例,具有以下读数据的特征:1)数据集顺序的随机化处理造成传统的单机缓存策略失效;2) 多个epoch会对

51 Technology lddgo Shared on 2024-02-06

本文记录两次报错系统监控现象以及作者针对性的排查过程和分析,最终解决了问题的全过程。

59 Technology lddgo Shared on 2024-02-06

随着 Kuberentes 等云原生技术的飞速发展,带来了研发与运维模式的变革。企业软件架构由单体服务向分布式、微服务演进。随着业务发展,多语言、多框架、多协议的微服务在企业中越来越多,软件架构复杂度越来越高,如何快速通过可观测工具快速定位出问题对研发人员至关重要。为满足全场景、端到端的应用监控需求,应用实时监控服务 ARMS 推出应用监控 eBPF 版,通过 eBPF 技术完善整个应用监控体系。应用监控 eBPF 版提供无侵入、语言无关的可观测能力。 详细产品介绍:多语言应用监控最优选,ARMS 应用监控 eBPF 版正式发布 使用 eBPF 来进行可观测性需要进行应用层协议解析,但云上微服务软件架构中的应用层协议往往比较复杂,这也给协议解析带来了不小的挑战。传统的协议解析方式存在 CPU、内存占用高,错误率高等问题,在应用监控 eBPF 版中,我们提出一种高效的协议解析方案,实现对应用层协议的高效解析。

40 Technology lddgo Shared on 2024-02-06

本文是技术人面试系列MySQL篇,面试中关于MySQL都需要了解哪些基础?一文带你详细了解,欢迎收藏!

63 Technology lddgo Shared on 2024-02-05

本文主要以一个Java工程师视角,阐述如何从零(无任何二三方依赖)构建一个极简(麻雀虽小五脏俱全)现代深度学习框架(类比AI的操作系统)。

41 Technology lddgo Shared on 2024-02-04

LoRA(Low-rank Adapter)在大模型(如GPT-3,LLama, Qwen等)中,是一种重要的微调技术。该技术通过在不改变预训练模型参数的同时,添加低阶矩阵,学习新的、特定于任务的参数。这种微调方式不仅维持了模型的高效性能,也显著提升了模型训练和部署的效率。然而当对base model进行规模化多任务微调时,相关部署成本可能会显著增加。基于实际应用场景,成本和效率考虑,我们在RTP-LLM框架上实现了两种LoRA方法:静态LoRA和动态LoRA。

40 Technology lddgo Shared on 2024-02-02