大型语言模型(Large language models,LLM)是基于大量数据进行预训练的超大型深度学习模型。底层转换器是一组神经网络,这些神经网络由具有 self-attention 的编码器和解码器组成。编码器和解码器从一系列文本中提取含义,并理解其中的单词和短语之间的关系。 当前 LLM 模型推理的主要瓶颈是 GPU 显存资源不足。因此,各类加速框架主要集中于降低 GPU 显存峰值和提高 GPU 使用率两大目标。 TensorRT-LLM[1]是 NVIDIA 推出的大语言模型(LLM)推理优化框架。它提供了一组 Python API 用于定义 LLMs,并且使用最新的优化技术将 LLM 模型转换为 TensorRT Engines,推理时直接使用优化后的 TensorRT Engines。 TensorRT-LLM 主要利用以下四项优化技术提升 LLM 模型推理效率。
本文是一篇DDD的最佳实践文章,读者也可以认为本文类似在介绍一种多字段单据的设计模式,整个文章会以一个简单版的电商购物背景作为一个领域上下文,过程中注重介绍领域组件的形成过程,同时会重点突出DDD的核心点。
软件系统有三个追求:高性能、高并发、高可用,俗称三高。本篇讨论高并发,从高并发是什么到高并发应对的策略、缓存、限流、降级等。
阿里小蜜家族(阿里小蜜、店小蜜、万象),从2015年发展至今,已经成为了覆盖淘天P-C(平台-消费者)、B-C(商家-消费者)、P-B(平台-商家)全咨询体系的智能对话机器人,日均接待量级在百万(阿里小蜜)到千万(店小蜜)范围。
本文写给已决定报考高级软件架构设计师的同学,从软考报名到正式考试,有40天时间,本文纯应试备考经验,一个月速成,仅供参考。
推荐系统是一种信息过滤系统,用于预测用户偏好,从大量的信息中筛选出用户可能感兴趣的内容进行个性化推荐。一个完整的推荐系统流程主要包括了 多路召回 -> 素材补全 -> 精排过滤 -> 混排 ->适配输出 等处理节点。混排作为结果输出前的最后一层处理,主要作用是将不同来源的推荐结果进行归一化的组合排序,一方面是为了获取对于用户推荐效果最优的排序序列,另一方面也能提高推荐的多样性、个性化以及覆盖范围。