本文整理自美团技术沙龙第77期《美团亿级流量系统的质量风险防控和稳定性治理实践》。本文介绍了基于模式挖掘的可靠性治理探索,为通过技术手段解决该领域代表性问题开启了新的思路。文章第一部分介绍可靠性治理的痛点;第二部分引入模式的概念;第三部分讨论新基建下的新尝试;第四部分分享三个典型的实践案例。
本文整理自美团技术沙龙第77期《美团亿级流量系统的质量风险防控和稳定性治理实践》。文章第一部分介绍了软件系统风险与变更;第二部分介绍了代码变更风险可视化系统的能力建设;第三部分介绍了整个系统在美团内部实践落地的情况;最后是对未来的规划和展望。希望对大家能有所帮助或启发。
本文介绍了美团到家/站外投放团队在多场景建模技术方向上的探索与实践。基于外部投放的业务背景,本文提出了一种自适应的场景知识迁移和场景聚合技术,解决了在投放中面临外部海量流量带来的场景数量丰富、场景间差异大的问题,取得了明显的效果提升。希望能给大家带来一些启发或帮助。
本文精选了美团技术团队被KDD 2023收录的7篇论文进行解读,论文覆盖了Feed流推荐、多模态数据、实例分割、用户意图预测等多个方向。这些论文也是美团技术团队与国内多所高校、科研机构合作的成果。希望给从事相关研究工作的同学带来一些启发或者帮助。
本文整理自美团技术沙龙第76期《大前端研发协同效能提升与实践》,为大家介绍了美团到店前端研发框架Rome实践和演进趋势。 具体来讲,本文首先介绍了Rome整体的工程生态、演变路径、规模化升级以及工程框架外的开发辅助工具;第二部分,重点阐述了如何做框架度量和相关的业务实践;最后做整体的总结以及对工程框架的下一阶段的思考。希望能对大家带来一些帮助或启发。
视觉分割技术在街景理解中具有重要地位,同时也面临诸多挑战。美团街景理解团队经过长期探索,构建了一套兼顾精度与效率的分割技术体系,在应用中取得了显著效果。同时,相关技术斩获了CVPR 2023竞赛2项冠军1项季军。本文将详细介绍街景理解中分割技术的探索与应用,希望能给从事相关研究工作的同学带来一些帮助或启发。
外卖场景下,用户“复购”属性强、下单频次高,既想下单老商家,也会想换换“新口味”。为更好平衡用户的复购、尝新体验,外卖推荐团队从2022年起开始持续投入,构建了外卖场景新颖性推荐的体系化解决方案。 截止目前,外卖首页用户曝光新颖性累计提升19%+,新颖好评率累计提升7%+,用户新颖体验Bad Case率累计降低18%+。本文将详细介绍外卖首页Feed用户新颖体验优化过程中面临的挑战、解决思路以及业务思考。
相比于其他电商场景,外卖场景对于实时发现和反馈用户兴趣的能力有着更高的要求。近年来,美团外卖算法团队摸索出了一套适用于外卖场景的智能陪伴型导购架构和策略。这一举措已经取得了显著成效,本文将详细介绍外卖搜索技术团队搭建智能陪伴型导购时,所遇到的挑战以及解决思路,希望能对大家有所帮助或启发。