本文主要介绍了 RocksDB 的基础原理,并阐述了 RocksDB 在vivo消息推送系统中的一些实践,通过分享一些对 RocksDB 原生能力的探索,希望可以给使用RocksDB的读者带来启发。
本文介绍了一次排查Elasticsearch node_concurrent_recoveries 引发的性能问题的过程。
本文是vivo互联网大数据团队《BI数据可视化平台建设》系列文章第2篇 -筛选器组件。 本文主要介绍了BI数据可视化平台建设中比较核心的筛选器组件, 涉及组件分类、组件库开发等升级实践经验,通过分享一些对交互和业务耦合度高的组件开发迭代的思考,希望可以给正在做组件重构解耦的读者带来启发。
本文是vivo互联网大数据团队《BI数据可视化平台建设》系列文章第1篇 - 交叉表组件。 交叉表在数据分析里应用广泛,通过本文,你将了解到: 交叉表的基本概念,以及BI可视化平台常见术语。 我们的表格类组件的演化过程,以及如何通过技术调研和优化实现大数据量下渲染性能,一步一步从原先的~10s降低到3~4s。 交叉表的一些特定场景,提供了一些技术实现简易描述,对这些场景有一些宏观认识。 Worker,虚拟滚动,微应用等关键技术的实现细节。
本文主要介绍在vivo内部针对Dubbo路由模块及负载均衡的一些优化手段,主要是异步化+缓存,可减少在RPC调用过程中路由及负载均衡的CPU消耗,极大提升调用效率。
随着互联网业务的快速发展,网络攻击的频率和威胁性也在不断增加,端口是应用通信中的门户,它是数据进出应用的必经之路,因此端口安全也逐渐成为了企业内网的重要防线之一,然而网络端口因其数量庞大、端口开放和关闭的影响评估难度大,业务影响程度高、以及异常识别技术复杂度高等特点给网络端口安全治理带来了一定挑战,如何对端口风险进行有效治理几乎是每个企业安全团队在攻击面管理工作中持续探索的重点项。
本文介绍了vivo在大数据元数据服务横向扩展道路上的探索历程,由实际面临的问题出发,对当前主流的横向扩展方案进行了调研及对比测试,通过多方面对比数据择优选择TiDB方案。其次分享了整个扩展方案流程、实施遇到的问题及解决方案,对于在大数据元数据性能上面临同样困境的开发者本篇文章具有非常高的参考借鉴价值。