作为广汽集团旗下的智慧出行平台,如祺出行上线四年时间,用户规模和订单量保持高速增长。在过去的2022年,如祺出行平台累计注册用户突破1800万,同比增长64%,年度订单总量超7000万,同比增长52%。 高速增长的用户规模和订单量,对技术平台提出更高要求。 随着专快车业务的快速增长,越来越多业务需求与业务主流程耦合,导致调用链过长,接口延迟增加了数倍,整体架构无论是性能还是扩展性,都存在很大的风险,遇到节假日高峰,随时都有崩溃的风险。 为了提升架构的稳定性,保障用户体验,如祺出行于2021年启动架构升级。其中,引入消息队列做异步化是整个分布式架构设计的核心手段之一。
随着云数据中心应用程序对内存的需求持续增长,TencentOS“悟净”——服务器内存多级卸载方案应运而生。“悟净”利用OS内核侧进行内存优化的天然优势,保障业务内存使用性能前提下,将较冷的内存换出至较便宜的设备上,从而降低整机的内存消耗,提高内存资源利用率,通过平滑降配、负载调压、内存超卖等手段实现降本增效,助力业务和客户商业增值。下面跟着本篇文章,来了解一下TencentOS“悟净”的强大之处吧!
微信的多维指标监控平台,具备自定义维度、指标的监控能力,主要服务于用户自定义监控。作为框架级监控的补充,它承载着聚合前 45亿/min、4万亿/天的数据量。当前,针对数据层的查询请求也达到了峰值 40万/min,3亿/天。较大的查询请求使得数据查询遇到了性能瓶颈:查询平均耗时 > 1000ms,失败率居高不下。针对这些问题,微信团队对数据层查询接口进行了针对性的优化来满足上述场景,将平均查询速度从1000ms+优化到了100ms级别。本文为各位分享优化过程,希望对你有用!
随着 ChatGPT、Midjourney、Stable Diffusion 等现象级应用的广泛使用,大模型的安全性受到了学术界和产业界的广泛关注。现有的研究热点主要围绕两方面: (1)利用 SFT 与 RLHF 等技术将大模型与人类偏好对齐,从而提升大模型自身的安全性。 (2)针对不同场景设计专用内容过滤器。除了大模型服务系统自身的安全性之外,如何防止大模型引发其他类型的风险也是值得注意的方向,本研究全面地讨论了大模型对于现有数字黑灰色产业的革新以及如何利用大模型自身的能力构建下一代的风控系统,针对一些具体的案例,我们给出了详细的上下游作恶手法还原,以此警示大家注意防范生成式 AI 引发的新型风险。 本文由 AI lab,SSV 公益平台部,PCG 画像平台中心,三方合作完成,旨在吸引对于 AIGC 在风控场景引发的风险的重视及提出一些解决思路。
本文作者在腾讯多年,主要从事的是腾讯云CDN、EdgeOne产品的后台研发工作。作者在云计算领域遇到了不少代码设计和程序设计的问题,他对于如何把项目中的代码标准化、提高开发维护的效率,做了总结梳理。本篇为各位分享作者总结的代码设计、架构设计原则和工作思维。欢迎阅读~
毕业超过十年了,感慨岁月无情。做了若干年后台开发(之前做电信领域),大致说一下常见的开发心得和调试手段。使用互联网这么多年,收获的很多,总结的很少。本着互联网精神,希望可以帮到互联网另一端的你。由于本人是做 C 语言的开发,陈述的经验也是 C 常用的调试手段。 调试很麻烦,困扰着无数程序员们。很难有人保证自己写的代码一行错误都没有,有问题你就要查。怎么查?高手者,反汇编,看 2 进制;low 一点的就 gdb、看统计;再 low 就加打印。还可以再 low 吗?可以,自己写 bug,别人查。方法林林总总,长期掌握总可以找到适合自己的。 而调试的目的是什么,找到 BUG。想当年一个高手比喻的好:你找 BUG 其实你就是福尔摩斯,为啥是福尔莫斯呢?想想你看到 BUG 案发现场--合格的程序都有日志、dump 内存、计数等基本案发现场吧。嗯,什么都没有,找写代码的人自己查。找问题就是在众多信息中,抽丝剥茧,找到疑点、反复推演程序运行的代码,最终找到作案的那一行或者几行代码。 这个过程很折磨人,没有任何眉目时,令人茶不思饭不想。找到问题问题后,如打鸡血般兴奋,自己也会陶醉般飘飘然。