本文主要分享我们近期在Embedding模型训练上的工作「Conan-Embedding」。目前,Conan-Embedding已在最全面、最大规模的中文语义向量评测榜单C-MTEB上达到SOTA,超越了阿里、百川、OpenAI等众多Embedding模型。
今年以来,商家营销工具业务需求井喷,需求数量多且耗时都比较长,技术侧面临很大的压力。因此这篇文章主要讨论营销工具前端要如何应对这样大规模的业务需求。
在我们的项目中,每个版本发布之后,我们会创建一个opt分支,用于修复线上崩溃以及业务逻辑BUG。 开发过程中,一个APP可能同时并行开发多个需求,每个需求上线的预期时间可能会有不同。但是这个opt分支我们会保证在下个版本一定上线,QA同学也会在每个版本发布前预留测试opt分支的时间。
在视频审核中,对于特定的违禁视频内容需要进行严格管控和封禁。例如:对于领导人在一些特定时期事件的丑化;视频中出现醒目的广告引导,这些广告最终可能指向境外一些赌博,淫秽网站;再有对于一些像是巴以冲突等时政事件的恶意抹黑。这些都需要审核系统在视频进审时可以快速识别并封禁这些内容。
iLogtail 作为开源可观测数据采集器,对 Kubernetes 环境下日志采集有着非常好的支持,本文跟随 iLogtail 的脚步,了解容器运行时与 K8s 下日志数据采集原理。
本文作者通过优化腾讯文档业务里的相关实现,将高频调用场景性能优化到原来的十倍,使文档核心指标耗时实现 10~15% 的下降,与此同时内存的增加仍细微到可忽略不计。本文将从 V8 整体架构出发,深入浅出 V8 对象模型,从汇编细节点出其 ICs 优化细节以及原理,最后根据这些优化原理来编写超快的 JS 代码
本文系火山引擎多云多活技术拆解系列文章的第三篇,将基于火山引擎的技术实践和客户服务经验,介绍如何在多云环境中实现高效、精准的流量调度,保障业务持续稳定。