RTC(Real Time Communication)是音视频基础设施,它已经融入了大家生活的方方面面:工作中,我们组织视频会议,即使团队成员身处异国,也能保证项目推进;休息时,我们打开抖音,看主播直播连麦;来一局游戏时,我们打开小队语音,大杀四方;学习时,我们相聚线上互动课堂,知识传播不再受距离的桎梏。RTC 拉近了大家的距离,丰富了大家的生活。 在这些场景里,我们最不能忍受的是什么?是延迟!想象一下,开会或者主播连麦时,一个人讲完话,其他人隔 10 秒才能做出反应,这几乎是完全不能接受的体验。 那么什么样的延迟才是好的体验呢?根据 ITU-T G.114 的建议:延时低于 400ms 的通话体验是可接受的,低于 200ms 是令人愉悦的。
在过去的几年中,以容器技术为代表的云原生领域受到了极大的关注和发展,容器化的落地是企业降本增效的一个重要手段,截止目前得物已基本完成了全域的容器化。容器化过程中,一方面平稳地将服务的部署和运维方式从以前的ECS模式切换到了容器化模式;另一方面为公司在资源利用率、研发效率上拿到了许多提效的收益。 得物作为新一代潮流网购社区,以AI和大数据技术为基础的搜索引擎、个性化推荐系统是业务开展的强大支撑力,所以业务应用当中算法域的应用占了的很大比例。容器化过程中,针对算法应用服务的研发流程和普通服务的差异性,在充分调研算法域研发同学需求的基础上,我们面向算法域的研发场景建设了得物云原生AI平台—KubeAI平台。经过功能的不断迭代,在支持的场景上不断拓展,KubeAI当前已经支持CV、搜索推荐、风控算法和数据分析等涉及AI能力的业务域顺利完成了容器化,在资源利用率提升、研发效率提升上面均拿到了不错的成果,本文将带大家一起了解KubeAI的落地实践过程。
去年此时发表了一篇文章 《流计算引擎数据一致性的本质》,主要论述了流计算引擎中的数据一致性问题,事实上,该文章只能算作流计算数据一致性的上篇,如何通过流计算中得到真正准确、符合业务语义的数据,需要作进一步阐述。强迫症接受不了这种半拉子工程,所以今年还是陆陆续续把下篇(流计算引擎数据正确性的挑战) 撰写完成。上下两篇文章的主要论点,分别对应了流计算领域中的两大难题:端到端一致性和完整性推理。
为了提升应用稳定性,我们对前端项目开展了脚本异常治理的工作,对生产上报的js error进行了整体排查,试图通过降低脚本异常的发生频次来提升相关告警的准确率,结合最近在这方面阅读的相关资料,尝试阶段性的做个总结,下面我们来介绍下js异常处理的一些经验。
在我们之前分享的《Dutter | 钉钉 Flutter 跨四端方案设计与技术实践》《Dutter | 前车之鉴:聊聊钉钉 Flutter 落地桌面端踩过的“坑”》文章中,有为大家简单介绍过钉钉 Flutter 桌面端应用的一些情况。在文章中我们有提到,因为需要支持多窗口、窗口内嵌等场景,在桌面端我们无法使用 FlutterBoost 一类的中间件来共享 FlutterEngine,只能采用多引擎方案来驱动多画布同时渲染。 此方案虽然能满足现阶段钉钉业务使用,但未来随着业务盖度、复杂度的提升,方案的弊端也愈加明显:引擎启动偶现卡顿、首帧耗时略长、内存占用高等。尤其是钉钉 Windows 端因为32位兼容问题,目前仍以 JIT 模式在运行 Flutter 页面,情况相比 AOT 模式更加差一些。以钉钉 Windows 目前线上业务为例,若不做任何优化,启动首帧展示耗时大概在 1000ms~2600ms 之间,每个引擎内存占用大概在 70MB 左右。 我们选择基于 Flutter 来构建钉钉跨4+端研发框架(Dutter) 的主要初衷即看中其在性能和体验上具备可媲美 Native 运行
在 ICE、Rax 等项目研发中,我们或多或少都会接触到 build-scripts 的使用。build-scripts 是集团共建的统一构建脚手架解决方案,其除了提供基础的 start、build 和 test 命令外,还支持灵活的插件机制供开发者扩展构建配置。 本文尝试通过场景演进的方式,来由简至繁地讲解一下 build-scripts 的架构演进过程,注意下文描述的演进过程意在讲清 build-scripts 的设计原理及相关方法的作用,并不代表 build-scripts 实际设计时的演进过程,如果文中存在理解错误的地方,还望指正。
一个IP报文如何跨越万水千山达到目的地?本文将以阿里云为例,带领大家一起探索同地域内云上通信的全过程,完整展现云上同地域内各种场景的IP报文之旅,深入理解云网络技术、产品和通信。