1. B站的直播间作为整个APP中交互最为复杂的单页面之一,其承担的业务量已经不亚于一个小型APP。对比APP的结构会发现许多相同处,但与组成APP的各个独立Activity不同,直播间由各个独立的视图组成。 2. 业务逻辑基于MVVM的设计分为三层(Service即M层),理想状态下各个业务间的交互是内聚的,各业务间不会感知到其他业务的存在,View显示需要的数据和状态都由各自对应的ViewModel提供。 3. 现实情况中业务交互并没有那么理想,直播间中的一个View显示的数据会受到其他业务的数据、状态影响,因此一个View除了需要处理自己内聚的逻辑为还需要关心其他View的数据变化。
“ DDD设计的目标是关注领域模型而并非技术来创建更好的软件,假设开发人员构建了一个SQL,并将它传递给基础设施层中的某个查询服务然后根据表数据的结构集取出所需信息,最后将这些信息提供给构造函数或者Factory,开发人员在做这一切的时候早已不把模型看做重点了,这个整个过程就变成了数据处理的风格 ”——摘 Eric Evans《领域驱动设计》 《领域驱动设计》中的Repository(下面将用仓储表示)层实际上是极具有挑战性的,对于它的理解,也十分重要。本文大部分内容都在众多前辈理论基础上,从一个崭新的领域视觉开始探索,并结合自己的实践感悟进行细致的解析。同时本文不仅仅是DDD前辈的搬运工,也创新提出了仓储实体转移的概念,可以提供给读者思考是否在自己场景中可以用到这种模式。即使读者也对仓储有很深的了解,我也觉得本文会对你有新的阅读体验。
数据地图平台是字节跳动内部的大数据检索平台,每天近万的字节员工在此查找所需数据。数据地图通过提供便捷的找数,理解数服务,大大节省了内部数据的沟通和建设成本。 血缘图谱由 xGraph 与数据地图平台团队合作研发。xGraph 从 Dataleap 业务中孵化,从底至上完全自研,提供设计成熟的内置节点、连线、分组样式,精心打磨图分析产品中常用布局和交互,帮助用户快速搭建关系图产品。血缘图谱解决方案已沉淀到 xGraph 为更多团队复用。
近年来,伴随数字经济的蓬勃发展,以科技创新为主线的数字化建设如火如荼。尤其在金融领域,《金融科技发展规划(2022—2025年)》与《关于银行业保险业数字化转型的指导意见》两个重磅文件的出台,更是为银行业数字化转型指明了发展方向。在此背景下,互联网银行作为新兴技术与传统金融服务有机融合的产物,凭借天然具备的数字原生属性,自诞生之日起即成为数字化转型的先锋队。结合上述特点,百信银行积极践行“金融为本,科技为用”的发展思路,大力发展人工智能、区块链、云计算等数字技术应用,在总结梳理当前银行数字化转型趋势的基础上,创新提出了数字化成熟度评估模型,以期为同业机构评估自身数字化发展阶段与成熟度水平提供有益参考,进而更好地规划前景、布局未来。
RTC(Real Time Communication)是音视频基础设施,它已经融入了大家生活的方方面面:工作中,我们组织视频会议,即使团队成员身处异国,也能保证项目推进;休息时,我们打开抖音,看主播直播连麦;来一局游戏时,我们打开小队语音,大杀四方;学习时,我们相聚线上互动课堂,知识传播不再受距离的桎梏。RTC 拉近了大家的距离,丰富了大家的生活。 在这些场景里,我们最不能忍受的是什么?是延迟!想象一下,开会或者主播连麦时,一个人讲完话,其他人隔 10 秒才能做出反应,这几乎是完全不能接受的体验。 那么什么样的延迟才是好的体验呢?根据 ITU-T G.114 的建议:延时低于 400ms 的通话体验是可接受的,低于 200ms 是令人愉悦的。
在过去的几年中,以容器技术为代表的云原生领域受到了极大的关注和发展,容器化的落地是企业降本增效的一个重要手段,截止目前得物已基本完成了全域的容器化。容器化过程中,一方面平稳地将服务的部署和运维方式从以前的ECS模式切换到了容器化模式;另一方面为公司在资源利用率、研发效率上拿到了许多提效的收益。 得物作为新一代潮流网购社区,以AI和大数据技术为基础的搜索引擎、个性化推荐系统是业务开展的强大支撑力,所以业务应用当中算法域的应用占了的很大比例。容器化过程中,针对算法应用服务的研发流程和普通服务的差异性,在充分调研算法域研发同学需求的基础上,我们面向算法域的研发场景建设了得物云原生AI平台—KubeAI平台。经过功能的不断迭代,在支持的场景上不断拓展,KubeAI当前已经支持CV、搜索推荐、风控算法和数据分析等涉及AI能力的业务域顺利完成了容器化,在资源利用率提升、研发效率提升上面均拿到了不错的成果,本文将带大家一起了解KubeAI的落地实践过程。
去年此时发表了一篇文章 《流计算引擎数据一致性的本质》,主要论述了流计算引擎中的数据一致性问题,事实上,该文章只能算作流计算数据一致性的上篇,如何通过流计算中得到真正准确、符合业务语义的数据,需要作进一步阐述。强迫症接受不了这种半拉子工程,所以今年还是陆陆续续把下篇(流计算引擎数据正确性的挑战) 撰写完成。上下两篇文章的主要论点,分别对应了流计算领域中的两大难题:端到端一致性和完整性推理。