在 B 端研发过程中,产品原型在产品需求文档中起着重要的作用。然而,在实际的开发过程中,我们发现了一些问题。首先,在需求评审阶段,有些产品需求文档可能缺少原型或者原型与研发团队的规范不一致,这需要研发同学与产品同学沟通补充原型图或者按照研发团队的规范进行绘制,这增加了产品同学和研发团队之间的沟通成本以及增加了产品同学的学习成本。其次,在业务验收阶段,开发的页面或效果可能不符合业务侧的期望,这又需要产品和研发团队反复沟通,导致业务侧对效果的感知链路过长。此外,产品同学还需要花费大量时间来根据需求文档描述输出样式固定的原型文档。 为了解决这些问题,我们想到了利用产品在『市场需求文档(MRD)——产品需求文档(PRD)——页面(Page)』沟通过程中沉淀的『共识』,即产品需求文档中的页面描述。我们可以利用大语言模型强大的推理能力,将这些共识『翻译』成符合研发团队规范的页面,从而减少沟通成本并缩短业务侧对效果的感知链路。另外,为了减少产品在不同界面切换频次,可以让产品利用浏览器插件在 PRD 文档页面进行文字选择,然后唤起原型生成工具生成页面原型和修改原型。本文主要介绍了我们利用大模型辅助产品
随着AI技术的发展,越来越多的产品尝试结合AI进行功能升级,作为设计师的你是否也在面临这样的问题:如何将AI技术与场景需求更好的结合,为用户提供顺畅的AI原生设计体验呢? 本文将以AI装扮项目为例,分两部分介绍我们是如何通过深入分析用户痛点与需求,结合公司内部能力支持,找到AI创新突破口。同时发挥设计优势,在没有行业参考前提下,探寻出一条AI创新实践之路,设计主导创新方案优化落地。
负责的网关日调用量从1千到1亿,具备独立完成千万 DAU 产品的技术能力,我用了整整 10 年。这个过程,我走了很多弯路,也学到了很多东西。这些东西,我想和大家分享。你缺少的不是道理,而是理解道理的机缘,静水流深虚心沉淀,属于你的时刻终会到来!
OpenAI 2月16日凌晨发布了文生视频大模型Sora,在科技圈引起一连串的震惊和感叹,在2023年,我们见证了文生文、文生图的进展速度,视频可以说是人类被AI攻占最慢的一块“处女地”。而在2024年开年,OpenAI就发布了王炸文生视频大模型Sora,它能够仅仅根据提示词,生成60s的连贯视频,“碾压”了行业目前大概只有平均“4s”的视频生成长度。
最近AI圈最火的无疑是OpenAI在2月15日发布的Sora。Sora可以根据文本生成一分钟的高清视频,生成的视频画质、连续性、光影等都令人叹为观止,Sora无疑将视觉生成推到新的高度。本文将重点回答三个问题:(1)Sora的原理是什么?(2)Sora到底是不是世界模型?(3)Sora会影响哪些行业?
在刚刚过去的2月15日,OpenAI发布了最新的视频生成AI模型Sora,可以基于文本指令或者图片、视频,生成最长60秒的内容丰富、栩栩如生的视频。OpenAI同时发布了Sora的技术文档《Video generation models as world simulators》,对Sora视频生成模型的原理进行了解释。
基于上述原因,在 iLogtail 诞生 10 周年之际,日志服务启动对 iLogtail 的升级改造,寄希望于让 iLogtail 的易用性更佳,性能更优,可扩展性更强,从而更好地服务广大用户。 目前,经过半年多的重构与优化,iLogtail 2.0 已经呼之欲出。接下来,就让我们来抢先了解一下 iLogtail 2.0 的新特性吧!