在哔哩哔哩海外市场,视频上传是创作者最重要的功能之一,也是创作者对平台忠诚度和满意度的重要影响因素之一。然而,2022年Q3,产品负责人在海外对创作者进行线下访谈的过程中,发现超过50%的创作者对上传体验不满意,主要反馈有两个方面:上传速度慢、上传进度长时间卡住。这些问题严重影响了创作者的上传效率和体验,甚至导致了部分创作者放弃上传或者转投其他平台。 为了优化上传体验,提升视频上传成功率,我们于2022年Q4季度针对海外创作端上传链路进行了专项治理。但在实施之前,我们分析了面临的几方面问题和挑战: 缺少技术数据来分析具体问题,导致我们无法准确定位问题点和优化方向 东南亚相对于国内较弱的网络环境和机型环境,导致了上传链路上存在很多不稳定因素 如何在有限的人力资源下,平衡业务需求和技术需求,让产出最大化。 为了解决这些问题和挑战,我们从数据、产品、技术三个维度组织了一系列的工作
随着互联网技术以及网络基建的快速发展和普及,视频直播已经成为了一种越来越普遍的娱乐和社交方式。无论是个人还是企业,都可以通过视频直播平台进行直播活动,向观众展示自己的生活、工作或者产品。同时,视频直播也成为了一种新型的社交媒体,让人们可以在虚拟空间中进行互动交流。 RTM(Real Time Media,低延时直播)是近期逐步兴起的一种以提升客户交互体验为目标的直播解决方案,它的特点是较传统的直播解决方案,端到端延时更小达到 1 秒级别,卡顿无明显负向,RTM 的网络传输层是基于 WebRTC 技术的(RTP/RTCP 协议)。 RTM 推流相比于传统的 RTMP 推流,在网络变化响应灵敏度、弱网对抗、带宽利用率等方面都有明显优势。在抖音的 AB 实验中主播人均被看播时长/被关注/被评论显著正向,拉流音频/视频卡顿 -22.2%/-7.8%,端到端延迟 -1.6%。目前 RTM 推流在抖音秀场完成了 10% 左右的常规放量。
数据平台利用大数据智能分析、数据可视化等技术,对公司内外部经过采集、建设、管理、分析的多源异构数据进行呈现和应用,实现了数据共享、日常报表自动生成、快速和智能分析,深度挖掘数据价值,满足企业各级部门之间的数据分析应用需求。因而也具有数据量大,场景多,数据准确性要求高,查询性能要有保障等特点。
挂一部分机器,不会丢数据、不会不可服务,是对现代数据库的一个比较基本的要求。 对于早期的单机数据库,一般使用主备架构。主备架构有很多的缺陷,并且这些缺陷是无解的。穿过主备架构里各种“优化”的名词,最后也无非是选择一碗毒药而已,这几个毒药包括: 1.脑裂,两个节点同时写入的冲突数据无法合并,只能丢掉一部分。想要不脑裂?那只能牺牲可用性。 2.同步复制,备机不可用的情况下,算不算写入成功?算,可能丢数据;不算,备机不可用==集群不可用,牺牲可用性。 3.异步复制,这完全躺平了,不考虑一致性。 4.所谓semi-sync等方案,也属于主备架构的一种。 5.业务自己去容错,做针对自己业务场景的对账、补偿等方案。 其实可以看出,主备架构是CAP理论做取舍的重灾区,一致性和可用性之间的关系特别矛盾。所谓一致性和可用性“兼顾”的主备方案,实际上是“兼不顾”。
在内网上有太多的架构相关的文章了(比如大名鼎鼎的自顶向下),我之前也写过应用架构设计的经验。但是总有种雾里看花的感觉,好像有很多相关的知识,soa、分布式事务、DDD、复杂系统重构、领域建模、业务架构、等等等,这些复杂的名词和知识感觉学了一堆仍然不得其法。 所以我准备把我这些年在支付宝做架构,自己摸索成长的内容写下来,看能否帮助到大家。
我们都知道DevOps诞生于互联网企业。Netflix、AWS等互联网企业号称每天往生产环境部署成百上千次。如此之快的部署频率让众多传统企业也跃跃欲试。所以大量的传统企业都纷纷投入巨资打造自己的DevOps基础设施 ,希望就此可以显著提高开发效率,加快新项目或新产品的投产速度。但是,他们对于DevOps基础架构是什么样子,需要具备哪些能力,如何构建,并没有一个很清晰的规划。 要想规划与打造适合传统企业的DevOps基础设施,首先需要弄清楚它必须具备哪些能力。我们尝试从基础、开发、测试、运维、项目管理五个维度来分析对DevOps的需求,从而探索DevOps基础设施与之对应的能力,并映射到一款业界流行的软件工具来承载这个能力。需要注意的是这里的目的是具象与实例化,而不是推荐使用某款软件工具。大家要根据自身实际来进行工具选型。
随着人工智能领域的迅速发展,Prompt Engineering 已成为一门备受关注的新兴技术。Prompt 是指用于引导机器学习模型生成符合预期输出的文本或代码片段。编写高效的 Prompt 对于提高模型效果至关重要。本文将探讨如何高效编写 Prompt。 一个高效的 Prompt 应由 Instruction 和 Question 两部分组成。在使用 openAPI 调用时,通常将 Instruction 通过 system 传递,将 Question 通过 user 传递。而在使用 Web 界面时,可以简单地拼接这两部分。本文的演示将以 Web 界面为主。
本文主要基于团队实际开发经验与积累,并结合了业界对大数据SQL的使用与优化,尝试给出相对系统性的解决方案。
近日,抖音 CV 技术团队在 ICDAR 2023 的“Detecting Tampered Text in Images”比赛中,利用自研的“CAS”算法从 1267 个参赛队伍中脱颖而出,获得分类赛道的第一名。 ICDAR(International Conference on Document Analysis and Recognition),是国际文档图像分析和识别领域公认的权威学术会议,涉及的领域包括文本识别、文本检测、文档分析和自然语言处理等。该会议从 1991 年开始,每两年举办一次,吸引了来自全世界的科学家、工程师和学者参加,分享他们的研究成果和最新技术进展。第 17 届将于 2023 年 8 月在美国加利福尼亚举行。 DTT 竞赛聚焦于真实场景下的文本图像篡改检测。随着文档分析与识别领域的快速发展,新兴技术也在不断涌现,并广泛应用于数字金融、电子商务、安全审核和智慧教育等领域。然而,以往的研究大多集中于文本内容的理解,对于图像本身的真实性关注度较低。与通常针对自然图片中人或物的篡改检测不同,文本的篡改检测在精度和泛化性方面更具挑战性。首先,篡改的区域通常很小