Disruptor是基于事件异步驱动模型实现的,采用了RingBuffer数据结构,支持高并发、低延时、高吞吐量的高性能工作队列,它是由英国外汇交易公司LMAX开发的,研发的初衷是解决内存队列的延迟问题,不同于我们常用的分布式消息中间件RocketMQ、Kafaka,而Disruptor是单机的、本地内存队列,类似JDK的ArrayBlockingQueue等队列。
作者认为其实是没有最佳实践的,大多数时候要根据自己的业务情况做取舍。同时,真的发生问题的时候,事前做好容错设计才是确保稳定性的银弹。
本文介绍了后台开发中使用的缓存技术,如缓存策略、缓存类型,包括本地缓存和分布式缓存,还有缓存淘汰策略,以及缓存使用中的常见问题,如一致性问题、缓存雪崩、缓存穿透、缓存击穿。
Meta 公司最近发布了 Llama 3[1],这是其最新一代尖端开源大型语言模型(LLM)。基于其前身的基础之上,Llama 3 旨在提升 Llama 2 作为与 ChatGPT 竞争的重要开源产品的能力,如文章 Llama 2: 深入探索开源挑战者 ChatGPT[2] 中全面回顾的那样。 在本文中,我们将讨论 Llama 3 背后的核心概念,探索其创新架构和训练过程,并提供关于如何负责任地访问、使用和部署这一开创性模型的实际指导。无论你是研究人员、开发者还是 AI 爱好者,这篇文章都将为你提供利用 Llama 3 为你的项目和应用赋能的知识和资源。
OpenGL 对于文字的绘制以及字体的操纵提供了低层次的支持,即位图字体。每个字形根据他们的编号被放到位图字体中的确切位置,在渲染这些字形的时候根据这些排列规则将他们取出并贴到指定的位置。这种方法相对来说很容易实现。
归因,作为一种分析方法,旨在通过数据和逻辑推理,确定某个结果(如业务量、转化率、满意度等)是由哪些因素(如产品、价格、市场等)导致的,以及具体如何影响的,其在心理学、投资学、广告投放等多领域均有相关理论研究。例如,在互联网广告投放中,可以通过归因分析来评估不同的营销渠道对用户转化率的作用,并优化具体投放策略;在教育心理学领域,归因分析可以帮助教育工作者了解学生的学习态度和行为,并采取相应的教育策略来激发学生的学习动机。运用归因分析的方法,我们可以更好地厘清事物之间的因果关系,识别哪些因素是需要改进或调整的,进而有针对性地优化工作流程,避免陷入低效忙碌和迷茫的状态,减少盲目决策的风险。