随着旅游市场的回暖、出行需求的激增,去哪儿网酒店的单日预订量也刷新了历年的前高还在不断突破产生新高。 与此同时,酒店数仓每天处理的数据也在不断上涨,为了保障日常 SA 级的报表正常产出,需要我们持续优化数据处理的链路,消除存在的瓶颈与卡点。 酒店流量链路产出的核心宽表为:搜索( search S页 )、列表( list L页 )、详情( Detail D 页)、预订( booking B 页)和提交订单( order O 页)流量表,对应了酒店主流程各个页面的用户流量数据。 我们以一个具体的案例 “ L 页流量表” 优化作为切入点,来展开对流量链路的优化实践,承诺 SLA、体量够大、关联够多、逻辑够复杂、使用够广一直是 L 页流量表的内在标签。
研发效能是目前互联网和传统软件企业都高度关注的领域,其核心目标是:更高效、更高质量、更可靠、可持续地交付更优的项目。随着安居客技术研发团队的人员规模不断地扩大,业务对研发效能的期望越来越高,业务实现复杂度的提升,技术不断细分化,研发管理面临的问题越加复杂。基于这种情况,安居客QA团队在围绕着研发效能度量体系进行探索,经过几年的建设,目前整个体系已经形成,相应的平台也搭建完成。
dora是一个哈啰的开源的taro小程序微前端集成框架,具有把多页业务拆分并集成编译与通讯的能力,解耦了业务与业务,降低了总体的复杂度与多业务线合作难度,有轻量化扩展性强等特点。
随着携程机票BU业务规模的不断提高,业务系统日趋复杂,各种问题和挑战也随之而来。对于研发测试团队,面临着各种效能困境,包括业务复杂度高、数据构造工作量大、回归测试全量回归、沟通成本高、测试用例数量多且难以复用、测试数据维护量大以及自动化用例管理等问题。每个都会影响测试团队的效率和质量,给软件研发过程带来挑战。 总结下来主要是两个核心困难点:成本与复杂度。 成本方面,我们通常需要在成本和质量之间做出取舍,需要在快速迭代的同时保证质量,又需要在限定的投入下保证质量。 复杂度方面,当业务规则积累一段时间后,业务流程、规则、场景和数据处理的复杂度在叠加后呈二次或者指数等形式增加,给测试质量工作带来很大的挑战。
携程作为在线旅游公司,对外提供机票、酒店、火车票、度假等丰富的旅游产品,其系统稳定性关乎用户是否具有顺滑的出行体验。然而,流量激增、代码发布、运维变更等都会给系统稳定性带来挑战。 我们在2020年对生产故障的“发现-定位-解决效率”提出了“1-5-10”的目标(即一分钟发现故障,五分钟定位故障,十分钟解决故障),这无疑对监控告警提出了很高的要求。订单量是生产故障异常检测场景中最核心最显性的指标,订单量在自身形态上具有周期性、规律上升和下降、业务高峰和低谷等特点,影响因素包括节假日、促销等。倘若数以万计的业务线通过人工配置规则的方式来覆盖到所有业务场景,并且做到高准确率和召回率,是非常不现实的。因此,迫切需要一套配置费力度低、普适性强、准确率高、时效性强的智能异常检测算法体系来及时发现异常。 指标异常检测是智能运维领域的重要落地场景,携程AIOPS团队致力于提升告警质量,寻找告警效率、准确率和真实故障召回率三者之间的平衡点。我们将统计学方法和机器学习方法结合,根据指标的历史数据,将训练的多个模型组成一套异常检测系统,在覆盖真实故障的基础上,减少告警数量,产生更有价值的告警。
提示工程是一门新兴学科,就像是为大语言模型(LLM)设计的"语言游戏"。通过这个"游戏",我们可以更有效地引导 LLM 来处理问题。只有熟悉了这个游戏的规则,我们才能更清楚地认识到 LLM 的能力和局限。 这个"游戏"不仅帮助我们理解 LLM,它也是提升 LLM 能力的途径。有效的提示工程可以提高大语言模型处理复杂问题的能力(比如一些数学推理问题),也可以提高大语言模型的扩展性(比如可以结合专业领域的知识和外部工具,来提升 LLM 的能力)。 提示工程就像是一把钥匙,为我们理解和应用大语言模型打开了新的大门,无论是现在还是未来,它的潜力都是无穷无尽的。
本文整理自美团技术沙龙第76期《大前端研发协同效能提升与实践》,为大家介绍了美团到店前端研发框架Rome实践和演进趋势。 具体来讲,本文首先介绍了Rome整体的工程生态、演变路径、规模化升级以及工程框架外的开发辅助工具;第二部分,重点阐述了如何做框架度量和相关的业务实践;最后做整体的总结以及对工程框架的下一阶段的思考。希望能对大家带来一些帮助或启发。
IT 系统的运维监控最早出现在上世纪 90 年代。彼时,分布式架构正向传统的单体架构发出挑战,其带来显著优势的同时,也为系统开发和运维带来了新的难题。在这一背景下,IT 人员开始引入监控技术,观测主机上的应用运行情况,及时定位问题。 随着分布式系统、微服务、云计算技术兴起,IT 系统发生多轮演进,复杂的运维环境对监控提出了更高的要求。2018 年,CNCF 将可观测性引入 IT 领域,取代监控。可观测性也一跃成为云原生技术领域最热门的话题之一。 5 年后的今天,可观测性技术早已从早期的运维排查问题工具,逐渐进化成业务生产过程中的生产力工具。Gartner 更是将应用可观测性列为“2023 年十大战略技术趋势”,并表示“如果能够在战略中予以规划并成功执行,可观测性应用将成为数据驱动型决策的最强大来源”。
现在最常见的企业网络安全架构便是在企业网络边界处做安全防护,而在企业网络内部不做安全防范。这确实为企业的安全建设省了成本也为企业提供了一定的防护能力。但是这类比于现实情况的一个小区,这个小区里面所有的房屋都没有门,小区的门口站着一个保安,由他来鉴别谁能进入小区,谁不能进入小区,只要保安放行了一个人进入小区,这个人就可以在小区里为所欲为。那么大家会住在这个小区吗?我想大家都是不会的。 为什么我们不会呢,因为这样的小区太脆弱了,只要有办法绕过门口的保安,这种防护就形同虚设。例如一个小偷冒充里面的住户、尾随一个用户或者勾结里面的用户里应外合都能突破保安这道防线。类比于网络环境中,一个黑客盗用员工账号、重放链接复用、勾结企业员工都可以突破网络边界处的安全。