• ARTICLE
  • STRING
  • CONVERTER
  • ENCRYPT
  • NETWORK
  • MORE
    CHART
    MATH
    COORDINATE
    IMAGE
    FILE
  • ARTICLE
    STRING
    CONVERTER
    ENCRYPT
    NETWORK
    MORE
    CHART
    MATH
    COORDINATE
    IMAGE
    FILE
logo Online Tools
All Chinese English Newest Hottest
4918 search results

淘宝开放平台是阿里与外部生态互联互通的重要开放途径,通过开放的产品技术把阿里经济体一系列基础服务,像水、电、煤一样输送给我们的商家、开发者、社区媒体以及其他合作伙伴,推动行业的定制、创新、进化, 并最终促成新商业文明生态圈。 开放业务场景常常跟随内部业务的变化,在数据层面上会频繁发生变更。传统数据库在成本、易用性方面无法很好满足生态异变场景的需求。数据空间的探索,是为了在生态场景中支撑业务快速增长的基础上,提供一个可存储海量数据、单表可自动扩容、字段可无限扩充、查询效率不低于 MySQL 数据库的产品。如何以一套统一的数据架构,支持不同用户按需自定义数据模型,保证数据定义层面的扩展和变更不会影响自身和其他租户业务功能的可用性,将数据和能力集成在平台自身。为此我们打造官方弹性存储空间,在安全可控的情况下沉淀数据支撑更多业务场景标准化开放集成。

204 Technology lddgo Shared on 2023-06-21

右图是哈啰APP的客服中心,用户进入该页面,系统会根据用户的使用情况智能推荐高频问题,并猜测用户想解决的问题,这部分标准问题的解决方案由业务专家进行整理,能涵盖用户大部分的意图。对于解决不了的问题,用户进入IM入口,聊天机器人会和用户进行对话。机器人基于知识库进行匹配,针对每个意图分别配置答案,或者给出具体解决方案。 目前的痛点在于: 知识库迭代更新费时费力 模型难以跨业务通用 解决方案涉及到多模态的复杂数据融合问题 多轮任务型会话上下文的长距离依赖问题

56 Technology lddgo Shared on 2023-06-21

揭秘!最困扰程序员的5类BUG

54 Technology lddgo Shared on 2023-06-21

本文介绍了互联网业务数据效果评估的几种常见问题及方法,并基于分层抽样的逻辑优化出一套可应用于解决用户不均匀的“事后达尔文"分析法,可适用于无法AB测试或人群不均匀的AB测试等场景下的效果评估中,本文会基于实际应用案例,来给大家仔细阐述相关方法模型的思考过程,实现原理,应用结果,希望能够帮助大家,如果能对大家在各自领域中的业务效果评估有所助益的话,那就更棒了!

55 Technology lddgo Shared on 2023-06-21

本文介绍了 Jetty 中 ManagedSelector 和 ExecutionStrategy 的设计实现,通过与原生 select 调用的对比揭示了 Jetty 的线程优化思路。Jetty 设计了一个自适应的线程执行策略(EatWhatYouKill),在不出现线程饥饿的情况下尽量用同一个线程侦测 I/O 事件和处理 I/O 事件,充分利用了 CPU 缓存并减少了线程切换的开销。这种优化思路对于有大量 I/O 操作场景下的性能优化具有一定的借鉴意义。

51 Technology lddgo Shared on 2023-06-21

本文是一篇WebAssembly的入门文章,从理论介绍到实战方面有全面的讲述。

41 Technology lddgo Shared on 2023-06-20

在线应用的诊断一直是日常维护中的难点和痛点,2018年下半年,Alibaba 开源了 java 应用诊断工具 arthas ,让 java 应用的诊断能力上了一个台阶。作为基础架构团队,我们自然也对它非常感兴趣。研究后发现,arthas 确实是一个非常优秀的 java 诊断工具,但是也存在一些不足。 一是 arthas 更像是一个工具,而不像一个产品。如果要使用它,首先要登录相关机器,然后在机器上下载 arthas,再执行一些命令来运行。这整个流程里,下载可能出现问题,运行 arthas 也需要具有目标进程相应的权限,还需要先看看对应进程id等等...这些确实只是一些小问题,但也可以选择让这些问题不存在,让整个使用过程更加流畅。 二是 arthas 缺少 web 界面。命令行界面用起来确实很酷,但不可否认在相当一部分情况下 web 界面更直观更友好,很多需要查文档的情况在 web 界面下都可以直接操作,降低了使用门槛。 三是 arthas 所有功能都针对单台机器,实际上很多时候我们需要考虑和观察整个应用的运行情况,需要一个应用级的视角。 四是 arthas 是一个独立的工具。

53 Technology lddgo Shared on 2023-06-20

基于ClickHouse的Billions2.0日志方案上线后(B站基于Clickhouse的下一代日志体系建设实践),虽然能够降低60%的存储成本,但仍然存在几个比较明显的问题,需要进一步的优化和解决。

54 Technology lddgo Shared on 2023-06-20

本文整理自腾讯 IEG 高级研发工程师刘文平在《蓝鲸 x DeepFlow 可观测性 Meetup》中的分享实录,详细阐述了蓝鲸可观测性平台如何有效地 融合了 OpenTelemetry 的标准化数据接入能力及 DeepFlow 的无插桩、全面覆盖的数据收集能力, 进而解决游戏业务在观测数据采集、数据孤岛、以及云原生基础设施观测等领域所面临的难题。并展望了通过 DeepFlow,构建适合腾讯游戏的专属观测场景。点击下方卡片观看现场回放视频。

192 Technology lddgo Shared on 2023-06-20

也许你经历过这种情况:产品和设计同学用一句话就把需求说完了,你抓破脑袋做出来的版本又达不到他们的要求。不如尝试让 AI 承担痛苦,让它理解、拆解并实现一句话需求?本篇作者尝试提出一个自动配置可视化系统,通过自动生成表单解决上述痛点。欢迎阅读~

57 Technology lddgo Shared on 2023-06-20