stable diffusion真的是横空出世,开启了AIGC的元年。不知你是否有和我一样的困惑,这AI工具好像并不是那么听话?
人类有终身不断获取、调整和转移知识的能力,虽然在我们的一生中,我们确实倾向于逐渐忘记之前学习过的知识,但只有在极少的情况下,对新知识的学习会灾难性地影响已经学到的知识,这样的学习能力被称为增量学习的能力。 具体来讲,「增量学习的能力就是能够不断地处理现实世界中连续的信息流,在吸收新知识的同时保留甚至整合、优化旧知识的能力。」 增量学习(Incremental Learning)已经有20多年的研究历史,但增量学习更多地起源于认知神经科学对记忆和遗忘机制的研究,因此不少论文的idea都启发于认知科学的发展成果,本文不会探讨增量学习的生物启发,关于面向生物学和认知科学的增量学习综述可见 Continual lifelong learning with neural networks: A review[1]。
情绪识别在各种对话场景中具有广泛的应用价值。例如,在社交媒体中,可以通过对评论进行情感分析来了解用户的情绪态度;在人工客服中,可以对客户的情绪进行分析,以更好地满足其需求。 此外,情绪识别还可以应用于聊天机器人,通过实时分析用户的情绪状态,生成基于用户情感的回复,从而提供更加个性化的交互体验。对话情感识别(Emotion Recognition in Conversation)是一个分类任务,旨在识别出一段对话序列里面每句话的情感标签。 图1给出了一个简单的示例.对话中的话语情绪识别并不简单等同于单个句子的情绪识别,需要综合考虑对话中的背景、上下文、说话人等信息。
谈到数据仓库, 一定离不开使用Extract-Transform-Load (ETL)或 Extract-Load-Transform (ELT)。将来源不同、格式各异的数据提取到数据仓库中,并进行处理加工。 传统的数据转换过程一般采用Extract-Transform-Load (ETL)来将业务数据转换为适合数仓的数据模型,然而,这依赖于独立于数仓外的ETL系统,因而维护成本较高。现在,以火山引擎ByteHouse为例的云原生数据仓库,凭借其强大的计算能力、可扩展性,开始全面支持Extract-Load-Transform (ELT)的能力,从而使用户免于维护多套异构系统。具体而言,用户可以将数据导入后,通过自定义的SQL语句,在ByteHouse内部进行数据转换,而无需依赖独立的ETL系统及资源。 火山引擎ByteHouse是一款基于开源ClickHouse推出的云原生数据仓库,本篇文章将介绍ByteHouse团队如何在ClickHouse的基础上,构建并优化ELT能力,具体包括四部分:ByteHouse在字节的应用、ByteHouse团队做ELT的初衷、ELT in Byt
随着大模型热度持续,基于大模型的各类应用层出不穷。Langchain 作为一个以 LLM 模型为核心的开发框架,可以帮助我们灵活地创建各类应用,同时也为大模型的应用引入新的安全隐患。从今年 4 月 Langchain 被爆出在野 0day 漏洞开始,各类安全问题不断出现。腾讯安全平台部将持续关注大模型的应用安全,详细解读在大模型应用时代,如何与时俱进地保持安全策略,以保障大模型安全、可靠地应用。