相信你一定有从其他团队接手过业务系统的经历,不知道那时你是否有这样一个疑问:为什么每次交接给我的业务都是如此债务累累,明明负责他的研发都很厉害、甚至是大神,到底是因为什么让业务变得如此难以维护?
如何全面把握系统现状,以便在关键时刻做出明智的决策?这是很多负责全局稳定性的管理者深感关切的问题。基于这一背景,同时也为了寻求提升研发工作效率提升,去哪儿网构建了一套数字化质量度量体系,以此来更精确地度量、管理并提升系统稳定性。 本文将详细解读这套质量度量体系,阐述如何在100多个指标中筛选出关键的度量标准,并进行有效的优化。同时,也将探讨如何借助这个指标模型理论,衡量系统复杂度并进行系统防腐化治理。这套数字化度量体系让去哪儿网的管理决策更有依据,改进方向更明确,结果也更可控,实现了系统运行状态的可视化。
自2013年至2023年6月,字节跳动实验平台Libra(对外产品名为火山引擎A/B测试DataTester)已累计执行240万次A/B测试,为公司内500多个业务提供A/B测试评估和智能优化服务。 Libra平台如何一步步成长到足以支撑全公司各项业务完成在线实验、Libra团队是如何管控平台上的各类用户群体的实验行为,本文将从激励与控制两个维度探讨字节跳动Libra对平台用户的治理方法。
这是一篇非常有价值的文章,向开发者展示了生成式 AI 的潜力和应用。生成式 AI 是一种利用大型语言模型来生成和转换文本的技术,它可以帮助开发者解决一些复杂的问题,如代码生成,文档编写,内容创作等。生成式 AI 也是一种云原生的技术,它需要大量的计算资源和数据,以及高效的部署和管理方式。文章提供了一些实用的工具和平台,如 GitHub Copilot,Bard,ChatGPT 等,让开发者可以轻松地尝试和使用生成式 AI。文章还给出了一些注意事项和建议,如保护数据隐私,验证输出质量,避免滥用等,让开发者可以负责任地使用生成式 AI。我认为这篇文章是一个很好的入门指南,让开发者可以了解和利用生成式 AI 来打造创新的云原生应用。
当一个应用系统上部署多个“业务模块”的时候,我们期望有一个统一的结构模版,这个结构模版是“业务架构”和“技术架构”的一个重要衔接,本文就是对这个结构模版的一些探索。
随着AI浪潮的兴起,越来越多的应用都在利用大模型重构业务形态,在设计和优化Prompt的过程中,我们发现整个Prompt测评和优化周期非常长,因此,我们提出了一种Prompt生成、评估与迭代的一体化解决方案,以解决Prompt测评和优化过程中的挑战,加快业务和大模型结合的速度。
作为企业级数据库的核心组件之一,查询优化器的地位不可忽视。对于众多依赖数据分析的现代企业来说,一个强大且完善的查询优化器能够为数据管理和分析工作带来巨大的便利。 作为一款火山引擎推出的云原生数据仓库,ByteHouse基于开源ClickHouse构建,并在字节跳动内外部场景的检验下,对OLAP引擎能力、性能、运维、架构进一步升级。ClickHouse以快速处理数据而著名,但其查询优化器在处理多表查询和高维度数据时却显得力不从心。为了解决这一问题,火山引擎ByteHouse自研并推出了一款全新的查询优化器。 本篇文章来源于火山引擎ByteHouse技术专家《ByteHouse查询优化器的设计与实现》的分享,从现状分析、设计思路、实现方案、高阶优化、优化效果五个部分,拆解ByteHouse查询优化器如何实现性能10倍提升。
RocketMQ 5.0 提出了分级存储的新方案,经过数个版本的深度打磨,RocketMQ 的分级存储日渐成熟,并成为降低存储成本的重要特性之一。事实上,几乎所有涉及到存储的产品都会尝试转冷降本,如何针对消息队列的业务场景去做一些有挑战的技术优化,是非常有意思的事。 这篇文章就跟大家探讨下,在消息系统这样一个数据密集型应用的模型下,技术架构选型的分析与权衡,以及分级存储实现与未来演进,让云计算的资源红利真正传达给用户。